Project description:Long-read WGS characterization of commensal Campylobacter jejuni and Campylobacter coli isolates from dairy cattle in Northern Spain
Project description:The enterococci comprise a genus of 49 low-GC content Gram-positive commensal species within the Firmicutes phylum that are known to occupy diverse habitats, notably the gastrointestinal core microbiota of nearly every phylum, including human. Of particular clinical relevance are two rogue species of enterococci, Enterococcus faecalis and the distantly related Enterococcus faecium, standing among the nefarious multi-drug resistant and hospital-acquired pathogens. Despite increasing evidence for RNA-based regulation in the enterococci, including regulation of virulence factors, their transcriptome structure and arsenal of regulatory small sRNAs (sRNAs) are not thoroughly understood. Using dRNA-seq, we have mapped at single-nucleotide resolution the primary transcriptomes of E. faecalis V583 and E. faecium AUS0004. We identified 2517 and 2771 transcription start sites (TSS) in E. faecalis and E. faecium, respectively. Based on the identified TSS, we created a global map of s70 promoter motifs. We also revealed features of 5’ and 3’UTRs across the genomes. The transcriptome maps also predicted 150 and 128 sRNA candidates in E. faecalis and E. faecium, respectively, some of which have been identified in previous studies and many of which are new. Finally, we validated several of the predicted sRNAs by Northern Blot in biologically relevant conditions. Comprehensive TSS mapping of two representative strains will provide a valuable resource for the continued development of RNA biology in the Enterococci.
Project description:Enterococcus (E.) faecalis is a commensal in healthy humans, frequently found in a variety of fermented foods, and can serve as a probiotic. However, it has also been recognized as a pathogen causing diseases such as endocarditis, bacteremia and urinary tract infections. As known virulence factors are not limited to clinical isolates but widespread in many strains, additional fitness determinants should influence E. faecalis behavior in the host. We have performed a transcriptomic in vivo study with E. faecalis in the intestine of living mice to identify novel latent and adaptive fitness determinants within E. faecalis. The transcriptomic data derived from E. faecalis strain OG1RF monoassociated with wild type mice provide a first insight in the genes used to live as a commensal in the intestinal tract. Clear changes are observed as compared to growth under laboratory conditions (BHI broth) in the expression of genes involved in energy metabolism (e.g. dhaK and glpK pathway), transport and binding mechanisms (e.g. phosphoenolpyruvate carbohydrate PTS) as well as fatty acid metabolism (fab genes). This knowledge can be used to help explain its persistence in this environment, which is a prerequisite to cause infection in a compromised or inflamed host and possibly develop improved treatment strategies of the so far hard to cure infections.
Project description:Enterococcus faecalis is a common commensal organism and a prolific nosocomial pathogen that causes biofilm-associated infections. Numerous E. faecalis OG1RF genes required for biofilm formation have been identified, but few studies have compared genetic determinants of biofilm formation and biofilm morphology across multiple conditions. Here, we cultured transposon (Tn) libraries in CDC biofilm reactors in two different media and used Tn sequencing (TnSeq) to identify core and accessory biofilm determinants, including many genes that are poorly characterized or annotated as hypothetical. Multiple secondary assays (96-well plates, submerged Aclar, and MultiRep biofilm reactors) were used to validate phenotypes of new biofilm determinants.