Project description:Multispecies biofilms are the predominant form of bacterial growth in natural and human-associated environments. Although the pathways involved in monospecies biofilm have been well characterized, less is known about the metabolic pathways and emergent traits of a multispecies biofilm community. Here, we performed a transcriptome survey of the developmental stages of a 3-species biofilm community and combined it with quantitative imaging and growth experiments. We report the remodelling of central metabolism of two of the three species in this community. Specifically, we observed an increase in the expression of genes associated with glycolysis and pentose phosphate pathways in K. pneumoniae. Similarly, a decrease in the expression of the same pathways in P. protegens was observed along with an increase in expression of glyoxalate cycle genes when grown as a mixed species biofilm, suggesting reorganisation of metabolic pathways and metabolite sharing for the community biofilms. To test the possibility of cross-feeding for the community, planktonic growth experiments revealed that both the Pseudomonads grew well in TCA cycle intermediates, while K. pneumoniae grew poorly when given those carbon sources. Despite this poor growth in mono-culture, K. pneumoniae was still the dominant species in mixed species biofilms cultivated in TCA intermediates as the sole source of carbon. The biofilm growth data, combined with the transcriptomics data, suggests there is reorganisation of metabolism for the community members and may allow for cross-feeding that allows K. pneumoniae to dominate the community. We also demonstrated that sdsA1 of P. aeruginosa was induced upon exposure to the surfactant SDS and that this gene was essential in protecting mono and mixed species biofilms from surfactant stress. This also suggests that the community members can share defence mechanisms. Overall, this study describes a comprehensive transcriptomics level investigation of shared resources, metabolites and stress defence that may underpin the emergent properties of mixed species biofilm communities.
2022-10-07 | GSE214543 | GEO
Project description:Tap Water Mixed Bacterial Community Metagenome
Project description:Bacteria transform nutrients and degrade organic matter, making them an essential part of healthy ecosystems. By assaying bacterial physiology within a complex system, the status of the whole ecosystem can be investigated. Proteins are the dynamic molecules that control essential bacterial physiological responses and those of every organism; characterizing an organism's proteome can therefore provide information on its interaction with the environment. Data dependen proteomic analysis (DDA) is a global approach to assay the entire proteome, but sample complexity and the stochastic nature of mass spectrometry can make it difficult to detect low abundance proteins. We explored the development of targeted proteomic (selected reaction monitoring, SRM) assays in complex ocean samples in order to detect specific bacterial proteins of interest and to assess new tools for mixed community metaproteomic exploration. A mixed community was created from a dilution series of isolated culture of bacteria (Ruegeria pomoeroyi) and phytoplankton (Thalassiosira pseudonana). Using SRM, we were able to detect bacterial peptides from the community that were undetectable with the standard DDA approach. We demonstrate benefits and drawbacks of different proteomic approaches that can be used to probe for and resolve nuances of bacterial physiological processes in complex environmental systems.
Project description:Bacteria transform nutrients and degrade organic matter, making them an essential part of healthy ecosystems. By assaying bacterial physiology within a complex system, the status of the whole ecosystem can be investigated. Proteins are the dynamic molecules that control essential bacterial physiological responses and those of every organism; characterizing an organism's proteome can therefore provide information on its interaction with the environment. Data dependen proteomic analysis (DDA) is a global approach to assay the entire proteome, but sample complexity and the stochastic nature of mass spectrometry can make it difficult to detect low abundance proteins. We explored the development of targeted proteomic (selected reaction monitoring, SRM) assays in complex ocean samples in order to detect specific bacterial proteins of interest and to assess new tools for mixed community metaproteomic exploration. A mixed community was created from a dilution series of isolated culture of bacteria (Ruegeria pomoeroyi) and phytoplankton (Thalassiosira pseudonana). Using SRM, we were able to detect bacterial peptides from the community that were undetectable with the standard DDA approach. We demonstrate benefits and drawbacks of different proteomic approaches that can be used to probe for and resolve nuances of bacterial physiological processes in complex environmental systems.
2017-02-01 | PXD004799 | Pride
Project description:microbial community diversities of silages
| PRJNA433911 | ENA
Project description:microbial community in corn silages
| PRJNA982546 | ENA
Project description:microbial community diversities of mixed bacterial flora