Project description:The epigenomes of mammalian sperm and oocytes, characterized by gamete-specific 5-methylcytosine (5mC) patterns, are reprogrammed in early embryogenesis to establish full developmental potential. It is broadly accepted that the paternal genome is actively demethylated in the zygote while the maternal genome undergoes passive demethylation thanks to DNA replication over the subsequent cleavage divisions. Here we reveal that both maternal and paternal genomes undergo widespread active and passive demethylation in the pronuclear zygote before the first mitotic division. Whereas the passive demethylation requires DNA replication, the active demethylation relies on enzymatic oxidation of 5mC, as deletion of the DNA dioxygenase, Tet3, but not the inhibition of replication, blocks the active demethylation. At actively demethylated loci, 5mCs appear to be processed to unmodified cytosines in a manner independent of the DNA glycosylase TDG. These observations suggest the occurrence of genuine active demethylation in both parental genomes following fertilization. An extra supportive Tet3 knock-out female pronuclear sample related to experiment Series GSE56650.
Project description:The epigenomes of mammalian sperm and oocytes, characterized by gamete-specific 5-methylcytosine (5mC) patterns, are reprogrammed during early embryogenesis to establish full developmental potential. Previous studies have suggested that the paternal genome is actively demethylated in the zygote while the maternal genome undergoes subsequent passive demethylation via DNA replication during cleavage. Active demethylation is known to depend on 5mC oxidation by Tet dioxygenases and excision of oxidized bases by thymine DNA glycosylase (TDG). Here we show that both maternal and paternal genomes undergo widespread active and passive demethylation in zygotes before the first mitotic division. Passive demethylation was blocked by the replication inhibitor aphidicolin, and active demethylation was abrogated by deletion of Tet3 in both pronuclei. At actively demethylated loci, 5mCs were processed to unmodified cytosines. Surprisingly, the demethylation process was unaffected by the deletion of TDG from the zygote, suggesting the existence of other demethylation mechanisms downstream of Tet3-mediated oxidation. The dataset includes RRBS anlysis of 2 MII oocyte samples, 3 WT female pronuclei samples PN3-4 stage, 2 Tet3 KO female pronuclei samples and 2 Aphidicolin treated female pronuclei samples. Also as male counterpart, a Sperm sample, 2 WT male pronuclei samples PN3-4 stage, 2 Tet3 KO male pronuclei samples and 2 Aphidicolin treated male pronuclei samples were included.
Project description:Clostridium difficile infections are the leading cause of diarrhea associated to the use of antibiotics. During infection, C. difficile initiates a sporulation cycle leading to the persistence of C. difficile spores in the host and disease dissemination. Nowadays, the development of vaccine and passive immunization therapies against C. difficile have focused on toxins A and B. In the present study, we used an immunoproteome-based approach to identify immunogenic proteins located on the outer layers of C. difficile spores as potential candidates for the development of immunotherapy and/or diagnostic methods against this devastating infection. Experimental design. To identify potential immunogenic proteins on the surface of C. difficile R20291, spore coat/exosporium extracts were separated by two-dimensional electrophoresis (2-DE) and analyzed for reactivity against C. difficile spore-specific goat sera. Finally, the proteins present at the spot of the interest were in-gel digested with chymotrypsin, and the peptides generated were separated by nanoUPLC followed by MS/MS using a Quad-TOF MS, and corroborated by Ultimate 3000RS nano UHPLC coupled to QExactive Plus Orbitrap MS.
Project description:The epigenomes of mammalian sperm and oocytes, characterized by gamete-specific 5-methylcytosine (5mC) patterns, are reprogrammed in early embryogenesis to establish full developmental potential. It is broadly accepted that the paternal genome is actively demethylated in the zygote while the maternal genome undergoes passive demethylation thanks to DNA replication over the subsequent cleavage divisions. Here we reveal that both maternal and paternal genomes undergo widespread active and passive demethylation in the pronuclear zygote before the first mitotic division. Whereas the passive demethylation requires DNA replication, the active demethylation relies on enzymatic oxidation of 5mC, as deletion of the DNA dioxygenase, Tet3, but not the inhibition of replication, blocks the active demethylation. At actively demethylated loci, 5mCs appear to be processed to unmodified cytosines in a manner independent of the DNA glycosylase TDG. These observations suggest the occurrence of genuine active demethylation in both parental genomes following fertilization.
2016-09-01 | GSE60777 | GEO
Project description:Bacterial diversity in AM fungal spore-associated
Project description:The epigenomes of mammalian sperm and oocytes, characterized by gamete-specific 5-methylcytosine (5mC) patterns, are reprogrammed during early embryogenesis to establish full developmental potential. Previous studies have suggested that the paternal genome is actively demethylated in the zygote while the maternal genome undergoes subsequent passive demethylation via DNA replication during cleavage. Active demethylation is known to depend on 5mC oxidation by Tet dioxygenases and excision of oxidized bases by thymine DNA glycosylase (TDG). Here we show that both maternal and paternal genomes undergo widespread active and passive demethylation in zygotes before the first mitotic division. Passive demethylation was blocked by the replication inhibitor aphidicolin, and active demethylation was abrogated by deletion of Tet3 in both pronuclei. At actively demethylated loci, 5mCs were processed to unmodified cytosines. Surprisingly, the demethylation process was unaffected by the deletion of TDG from the zygote, suggesting the existence of other demethylation mechanisms downstream of Tet3-mediated oxidation.
Project description:Fungal resistant and susceptible maize genotypes were subjected to Aspergillus flavus spore inoculation and kernels around the infected area were collected 4 days after inoculation. Uninoculated kernels were also collected at 4 days. Microarray experiment was performed to compare the transcriptional profiles of the different genotypes and interpret the genes involved in the associated resistance of the individual genotype to further characterize them as potential molecular markers for resistance.