Project description:Acanthoscurria juruenicola is an Amazonian tarantula spider described for the first time a century ago. Specimens of both genders are similar in size and in most morphological aspects, but ecological behavior and their venom composition remained unknown to date. Here we present the trascriptomics, proteomics and peptidomics characterization of the spider venom by a combination of mass spectrometric analysis of both native and digested peptides, venom gland transcriptomics and bioinformatics.
Project description:The trillions of microorganisms in the human gastrointestinal tract are an underexplored aspect of pharmacology. Despite numerous examples of microbial effects on drug efficacy and toxicity, there is often an incomplete understanding of the underlying mechanisms. Here, we dissect the inactivation of the commonly prescribed cardiac glycoside, digoxin, by Eggerthella lenta. Whole genome transcriptional profiling, comparative genomics, and culture-based assays revealed a cytochrome-encoding operon up-regulated by digoxin, absent in non-metabolizing E. lenta strains, and predictive of the efficiency of digoxin inactivation by the human gut microbiome. Digoxin inactivation was further enhanced by microbial interactions and inhibited by arginine. Pharmacokinetic studies using gnotobiotic mice revealed that increasing dietary protein reduces the in vivo metabolism of digoxin by E. lenta, with significant changes to drug concentration in the urine and serum. These results emphasize the importance of viewing pharmacology from the perspective of both our human and microbial genomes. RNA-Seq analysis of Eggerthella lenta cultured with or without digoxin.
Project description:Spider silk proteins are synthesized in the silk-producing glands, where the spidroins are produced, stored and processed into a solid fiber from a crystalline liquid solution. Despite great interest in the spider silk properties, that make this material suitable for biomedical and biotechnological applications, the mechanism of formation and spinning of the silk fibers has not been fully elucidated; and no combination of proteomic and transcriptomic study has been carried out so far in the spider silk-producing glands. Nephila clavipes is an attractive orb-web spider to investigate the spinning process of silk production, given the properties of strength, elasticity and biocompatibility of their silk fibers. Thus, considering that the combination of proteomic and transcriptomic analysis may reveal an extensive repertoire of novel proteins involved in the silk spinning process, and in order to facilitate and enable proteomics in this non-model organism, the current study aims to construct a high quality reference mRNA-derived protein database that could be used to identify tissue specific expression patterns in spider silk glands. Next-generation sequencing has offered a powerful and cost-efficient technique for the generation of transcriptomic datasets in non-model species using diverse platforms such as the Illumina HiSeq, Roche 454, Pacific Biosystems, and Applied Biosystems SOLiD; In the current study, the Illumina HiSeq 2000 platform will be used to generate a N. clavipes spider silk glands transcriptome-based protein database. The transcriptome data generated in this study will provide a comprehensive and valuable genomic resource for future research of the group of spider silk-producing glands, in order to improve our understanding of the overall mechanism of action involved in production, secretion, storage, transport, protection and conformational changes of spidroins during the spinning process, and prey capture; and the results may be relevant for scientists in material Science, biology, biochemistry, and environmental scientists.
Project description:The goal of this study was to lay the groundwork for comparative transcriptomics of sex differences in the brain of wolf spiders, a non-model organism of the pyhlum Euarthropoda, by generating transcriptomes and analyzing gene expression. To examine differences in sex-differential gene expression, short read transcript sequencing and de novo transcriptome assembly were performed. Messenger RNA (mRNA) was isolated from dissected brain tissue of male and female subadult and mature wolf spiders (Schizocosa ocreata). The data consist of short read sequences for the two different life stages in each sex. Computational analyses on these data include de novo transcriptome assembly, using Trinity and CAP3 assembly suites, and differential expression analysis using the edgeR package. Sample-specific and combined transcriptomes, gene annotations, and differential expression results are described in this data note and are available from associated database submissions.
Project description:This study used the NimbleGen dog whole genome CGH 2.1M tiling array to assay copy number variants in the dog genome in multiple breeds and wolf.