Project description:Background: The rapid evolution and dissemination of mobilized colistin resistance gene (mcr) family has revealed as a severe threat to the global public health. Nevertheless, dramatic reduction in the prevalence of mcr-1, the major member of mcr family, was observed after the withdrawal of colistin in animal fodder in China since 2017, demonstrating that colistin acts as a selective stress to promote the dissemination of mcr-1. As the second largest lineage, mcr-3 was firstly discovered in 2017 and has been identified from numerous sources. However, whether the spreading of mcr-3 is driven by colistin remains unknown. Methods: To this end, we investigated the global prevalence of mcr-3 from 2005 to 2022 by an up-to-date systematic review, along with a nation-wide epidemiological study to establish the change of mcr-3 prevalence in China before and after 2017. To investigate the fitness cost imposed by MCR-3 upon bacterial host, in vitro and in vivo competitive assays were employed, along with morphological study and fluorescent observation. Moreover, by replacing non-optimal codons with optimal codons, synonymous mutations were introduced into the 5’-coding region of mcr-3 to study mechanisms accounting for the distinct fitness cost conferred by MCR-1 and MCR-3. Furthermore, by combining AlphaFold and molecular dynamics (MD) simulation, we provided a complete characterization on the putative lipid A binding pocket localized at the linker domain of MCR-3. Crucially, inhibitors targeting at the putative binding pocket of MCR-1 or MCR-3 were identified from small molecules library using the pipeline of virtual screening. Findings: The global prevalence of mcr-3 increased continuously from 2005 to 2022. The average prevalence was 0.18% during 2005-2014 and rapidly increased to 3.41% during 2020-2022. The prevalence of mcr-3 in China increased from 0.79% in 2016 to 5.87% in 2019. We found that the fitness of mcr-3-bearing E. coli and empty plasmid control was comparable but higher than that of mcr-1-positive strain. Although the putative lipid A binding pocket of MCR-3 was similar to that of in MCR-1, mcr-3 occupies remarkable codon bias at the 5’-end of coding region that disrupted the stability of mRNA, further reduced its protein expression in E. coli, resulting in the low fitness burden of bacterial host. Moreover, the 5’-end codon usage frequency appeared as a critical factor related with the evolution of mcr family. Furthermore, based on the similar lipid A binding pocket among MCR family protein, we identified three novel MCR inhibitors targeting at such pocket by screening from small-molecule library, which effectively restored the colistin susceptibility of mcr-bearing E. coli. Interpretation: For the first time, we found that the prevalence of mcr-3 increased continuously during 2016-2019 in China, demonstrating that the withdrawal of colistin in husbandry failed to prevent the dissemination of mcr-3. Our study evidenced that the 5’-end codon bias appeared as a crucial regulator upon the fitness cost conferred by horizontally transferred genes. Most importantly, the putative lipid A binding pocket verified from current study was a promising target site for designing inhibitors against mcr-positive strains.
Project description:The Moutan Cortex Radicis (MCR) has been used as an analgesic, sedative and anti-inflammatory agent. This study investigated the changes in gene expression by MCR treatment when stimulated with lipopolysaccharide (LPS) in cultured human gingival fibroblasts (HGFs) and the gene expression changes by the MCR when challenged with LPS using a microarray chip.
Project description:We tested orphan TCR autoreactivity using the peptide MHC-TCR chimeric receptor (MCR) co-culture system. In this system, cognate antigen recognition leads to TCR specific NFAT activation in MCR reporter cells expressing a mouse I-Ab MHC class II extracellular domain covalently linked to candidate peptides and an intracellular TCR signaling domain. We used mixed autoimmune bone marrow chimera spleens and kidneys as sources of cDNA to generate a transcriptome-wide library of natural autoantigen peptides . We cloned this cDNA-derived peptide (CDP) autoantigen library into the MCR retroviral backbone and transduced NFAT reporter cells to make a murine autoantigen MCR reporter library (MCR-Lib). We then used this library to screen orphan TCRs identified by scTCR-seq for autoreactivity.
Project description:The Moutan Cortex Radicis (MCR) has been used as an analgesic, sedative and anti-inflammatory agent. This study investigated the changes in gene expression by MCR treatment when stimulated with lipopolysaccharide (LPS) in cultured human gingival fibroblasts (HGFs) and the gene expression changes by the MCR when challenged with LPS using a microarray chip. Human gingival fibroblast were divided into three experimental groups; 1, C: Control, 2, LPS: LPS-treatment only, 3, MCR40: LPS- and MCR40-treatments. Total RNA was isolated from each experimental fibroblast (3 experimental group M-CM-^W 1 sample of each experimental group = total 3 samples).
Project description:Background: The halophyte Mesembryanthemum crystallinum (ice plant) is a model for studying salt tolerance. The morphology, physiology, metabolism, and gene expression of ice plant have been studied for over 40 years. Although the complete genome sequence has not been revealed, large-scale analyses of gene expression profiling have drawn an outline of salt tolerance in ice plant. Despite ample information in the transcriptome, miRNA information has not been documented. Results: We examined responses to a sudden increase in salinity in ice plant seedlings. Using a fluorescent dye to detect Na+, we found that ice plant roots respond to an increased flux of Na+ by either secreting or storing Na+ in specialized cells. High-throughput sequencing was used to identify small RNA profiles in three-day-old seedlings treated with or without 200 mM NaCl. Totally 132 conserved miRNAs belonging to 22 families were found. The hairpin precursor of 19 conserved mcr-miRNAs and 12 novel mcr-miRNAs were identified. Target genes are involved in a broad range of biological processes: transcription factors that regulate growth and development, enzymes that catalyze miRNA biogenesis for the most conserved mcr-miRNA, and proteins that are involved in ion homeostasis and drought-stress responses for some novel mcr-miRNAs. After 6 h of salt stress, the expressions of most mcr-miRNAs were down-regulated, whereas the expressions of their corresponding target genes were up-regulated. Analyses of the functions of target genes revealed that cellular processes, including growth and development, metabolism, and ion transport activity were up-regulated in roots under salt stress. Conclusions: Analyses of small RNA profile of ice plant seedlings identified many conserved miRNA families and several novel miRNAs. The expression of ten conserved miRNAs and three novel miRNAs were reciprocally correlated to predicted targets hourly after salt stress. Based on the expression pattern of miRNA and target genes in combination with the observation of Na+ distribution, we suggest that ice plant roots respond effectively to increased salinity by using Na+ as an osmoticum for cell expansion and guard cell opening. Excessive Na+ could either be secreted through root epidermis or stored in specialized leaf epidermal cells. These responses are partially regulated at the miRNA-mediated post-transcriptional level.
2016-12-31 | GSE83508 | GEO
Project description:mcr positive isolates from CATG of ZJU