Project description:This study provides a clear and accurate dynamic transcriptome profile of mRNAs in rumen, reticulum, omasum and abomasum of yaks. The results include high-quality genomic data and help to elucidate the important roles of these mRNAs in regulation of growth, development and metabolism in yaks, and to further understand the molecular mechanisms underlying metabolic regulation of yak stomach tissues. At the same time, it provided a theoretical basis for age-appropriate weaning and supplementary feeding in yaks.
Project description:Deep sequencing of mRNA from 6 organs of yak (Bos grunniens) Analysis of ploy(A)+ RNA of brain,heart,liver,lung,spleen, and stomach of yak (Bos grunniens)
Project description:Microbiome DNA from the adhering fraction of a sheep rumen. The RSTs were generated using an improved version of SARST (referred to as iSARST) from the microbiome DNA extracted from the adhering fraction of the rumen content taken from a sheep. The iSARST method is going to be submitted to Nature Biotechnology for publication. Keywords: other
Project description:This study identifies key microbiome and epithelial cell subtypes involved in grass digestion and VFA metabolism in the rumen. By integrating multi-omic data, we reveal novel links between microbial activity, epithelial cell function, and grassland foraging, providing critical insights into mechanisms underlying grass prevalence and their implications for optimizing ruminant health and productivity. This research enhances our understanding of the grass-microbiome- rumen axis and its role in sustainable grazing systems.
Project description:This study used yak and cattle-yak testes from different developmental stages as materials to construct a complete translation map of the testes, and integrated transcriptome and translation results to explore gene expression changes during the sexual maturation process of yak testes. This study utilized Ribo seq technology to construct a transcriptome map of yak testicular development, revealing that the expression of genes related to spermatogenesis is specifically translated and regulated at different developmental stages. In addition, many unknown open reading frames (ORFs) in the testes have been newly identified.
Project description:Cattle-yak is the hybrid offspring of yak and cattle. It has obvious heterosis in production performance, but the male sterility of cattle-yak has always been the focus of attention. Studies have shown that non-coding RNA is involved in the regulation of spermatogenesis. We comprehensively compared the testicular transcription profiles of cattle, yak and cattle-yak. More DEGs, DECs and DEMs were found in the intersection of the two comparison groups of cattle and cattle-yak, yak and cattle-yak, with 4,968, 360 and 59, respectively. The DEGs of cattle-yak, cattle and yak were mainly enriched in biological processes such as spermatogenesis, male gamete generation and sexual reproduction. At the same time, GO and KEGG analysis suggested that DECs host genes and DEMs source genes were also involved in the regulation of spermatogenesis. The construction of potential ceRNA networks found that some differentially expressed ncRNAs may be involved in the regulation of genes related to testicular spermatogenesis, including miR-423-5p, miR-449b, miR-34b/c, miR-15b, etc., as well as unreported miR-6123, miR-1306 and some miRNA and circRNA interaction pairs. This study provides a reference for further study on the mechanism of male sterility in cattle-yak.