Project description:The exposure to nano-plastics affects mammalian neurotoxic hazard characterization remains to be determined. Our aim was to investigate the neurotoxicity of nano-plastics in rodents. Animals were randomly divided into two groups: a control group and 50 mg/kg body weight PS NPs treatment groups. Before treatment, animals were fasted overnight. PS NPs were suspended into waters, vigorously stirred. The PS NPs via oral gavage once per day and for 6 months. The mice were treated with water in control group. We found that exposure to PS NPs caused cognitive decline. PS NPs exposure influenced the prefrontal cortex cells with more pathological alteration with increasing dosage. High-throughput RNA sequencing was conducted to explore miRNA expression in prefrontal cortex. Twenty-nine differentially expressed miRNAs were detected, including 12 upregulated and 17 downregulated miRNAs. This finding provided a reference for further studies on the development mechanisms of ncRNA during cognitive dysfunction.
Project description:The exposure to nano-plastics affects mammalian neurotoxic hazard characterization remains to be determined. Our aim was to investigate the neurotoxicity of nano-plastics in rodents. Animals were randomly divided into two groups: a control group and 50 mg/kg body weight PS NPs treatment groups. Before treatment, animals were fasted overnight. PS NPs were suspended into waters, vigorously stirred. The PS NPs via oral gavage once per day and for 6 months. The mice were treated with water in control group. We found that exposure to PS NPs caused cognitive decline. PS NPs exposure influenced the prefrontal cortex cells with more pathological alteration with increasing dosage. High-throughput RNA sequencing was conducted to explore miRNA expression in prefrontal cortex. Sixty-seven differentially expressed circRNAs were detected, including 25 upregulated and 42 downregulated circRNAs. We also explored 987 differentially expressed mRNAs, including 477 upregulated and 510 downregulated mRNAs.
2023-10-02 | GSE160012 | GEO
Project description:Plastics-associated microorganisms in aquaculture areas
Project description:Marine bacteria with potential to biodegrade micro plastics
| PRJNA803620 | ENA
Project description:Effects of polystyrene micro- and nano-plastics on the metabolism and gut microbiome of rare minnows (Gobiocypris rarus)+gut metagenome
Project description:Plastics are one of the most preoccupying emerging pollutants. Macroplastics released in the environment degrade into microplastics and nanoplastics. Because of their small size, these micro and nano plastic particles can enter the food chain and, in addition to their ecotoxicological effects, contaminate humans with still unknown biological effects. Plastics being particulate pollutants, they are handled in the human body by scavenger cells such as macrophages, which are important players in the immune system. In order to get a better appraisal of the effects of plastic particles on macrophages, we have studied the effects of unmodified polystyrene particles of 0.1, 1 and 10 micrometers of diameter, by a combination of proteomics and targeted approaches. Proteomics showed important adaptive changes of the proteome in response to exposure to plastics, with more than one third of the detected proteins showing a significance change in their abundance in response to cell exposure to at least one plastic beads size. These changes affected for example mitochondrial, lysosomal or cytoskeletal proteins. Although an increase in the mitochondrial transmembrane potential was detected in response to 10 micrometer beads, no alteration in cell viability was observed. Similarly, no lysosomal dysfunction and no alteration in the phagocytic capability of the cells was observed in response to exposure to plastic. When the inflammatory response was examined, no increase in the secretion of tumor necrosis factor or interleukin 6 was observed. Oppositely, the secretion of these cytokines in response to lipopolysaccharide was observed after exposure to plastic, which suggested a decreased ability of macrophages to respond to bacterial infection. In conclusion, these results provide a better understanding of the responses of macrophages to exposure to polystyrene particles of different sizes.