Project description:MDS patients are characterized as the deletion in chromosome 17. We generated induced pluripotent stem cells (iPSCs) from MDS fibroblasts. We performed SNP microarray analysis using Affymetrix axiom EUR array platform. Affymetrix axiom EUR arrays were performed according to the manufacturer's directions on DNA extracted from MDS fibroblasts and iPSCs.
Project description:MDS patients are characterized as the deletion in chromosome 17. We generated induced pluripotent stem cells (iPSCs) from MDS fibroblasts. We performed SNP microarray analysis using Affymetrix axiom EUR array platform.
Project description:Human trisomies can alter cellular phenotypes and produce congenital abnormalities such as Down Syndrome (DS). Here we have generated induced pluripotent stem cells (iPSCs) from DS fibroblasts, and introduced a TKNEO transgene into one copy of chromosome 21 by gene targeting. When selecting against TKNEO, spontaneous chromosome loss was the most common cause for survival, with a frequency of ~10-4, while point mutations, epigenetic silencing, and TKNEO deletions occurred at lower frequencies in this unbiased comparison of inactivating mutations. Mitotic recombination events resulting in extended loss of heterozygosity were not observed in DS iPSCs. The disomic cells that we derived proliferated faster and produced more endothelia in vivo than their otherwise isogenic trisomic counterparts, but hematopoietic differentiation, pluripotency and survival were statistically unchanged. Our study describes the first targeted removal of a human trisomy, which could prove useful in both clinical and research applications.
Project description:Orangutans are an endangered species whose natural habitats are restricted to the Southeast Asian islands of Borneo and Sumatra. For potential species conservation and functional genomics studies, we derived induced pluripotent stem cells (iPSCs) from cryopreserved skin fibroblasts obtained from captive orangutans. We report the gene expression profiles of iPSCs and skin fibroblasts derived from orangtuans. The overall goal was to evaluate gene expression biomarkers of pluripotency in iPSCs and skin fibroblasts derived from PBD-ZSD patients and healthy controls. Dermal fibroblast cultures from 2 orangutans were reprogrammed into iPSCs by transfection with retroviruses designed to express the human OCT4, SOX2, KLF4 and c-MYC cDNA. Fibroblasts and iPSCs were cultured in 1:1 ratio of DMEM:F12 medium supplemented with 20% KOSR (knock-out serum replacement) at 37°C with 5% CO2 until confluence for RNA extraction. The overall goal was to evaluate gene expression biomarkers of pluripotency in iPSCs and original fibroblast cultures.
Project description:SMEI patient induced pluripotent stem cells (iPSCs) were derived from patient fibroblasts. In order to test the similarity between patient iPSCs and human embryonic stem (hES) cells, microarry analysis was carried out on SMEI patient iPSCs and human embryonic stem cells. SMEI patient iPSCs were derived from patient fibroblasts. Human embryonic stem cells were derived from human blastocyst.And we use the microarray method to compare the global expression of patient iPSCs and embryonic stem cells.
Project description:Human trisomies can alter cellular phenotypes and produce congenital abnormalities such as Down Syndrome (DS). Here we have generated induced pluripotent stem cells (iPSCs) from DS fibroblasts, and introduced a TKNEO transgene into one copy of chromosome 21 by gene targeting. When selecting against TKNEO, spontaneous chromosome loss was the most common cause for survival, with a frequency of ~10-4, while point mutations, epigenetic silencing, and TKNEO deletions occurred at lower frequencies in this unbiased comparison of inactivating mutations. Mitotic recombination events resulting in extended loss of heterozygosity were not observed in DS iPSCs. The disomic cells that we derived proliferated faster and produced more endothelia in vivo than their otherwise isogenic trisomic counterparts, but hematopoietic differentiation, pluripotency and survival were statistically unchanged. Our study describes the first targeted removal of a human trisomy, which could prove useful in both clinical and research applications. RNA samples were from two trisomic iPSC clone (C2-4, C3-5) and four derived disomic subclones (C2-4-3, C2-4-4 and C3-5-11, C3-5-13). Duplicate RNA samples from human embyonic stem cells (H1) were included as control.
Project description:Orangutans are an endangered species whose natural habitats are restricted to the Southeast Asian islands of Borneo and Sumatra. For potential species conservation and functional genomics studies, we derived induced pluripotent stem cells (iPSCs) from cryopreserved skin fibroblasts obtained from captive orangutans. We report the gene expression profiles of iPSCs and skin fibroblasts derived from orangtuans.