Project description:Yellow stem borer (YSB), Scirpophaga incertulas (Walker) (Lepidoptera: Crambidae), is a major pest of rice in India, that can lead to 20-60% loss in rice production. Effective management of YSB infestation is challenged by the non-availability of adequate source of resistance and poor understanding of resistance mechanisms, thus necessitating studies for generating resources to breed YSB resistant rice and to understand rice-YSB interaction. Here we performed transcritpomics profiling of rice lines with contrasting response to YSB. RNA-sequencing of the susceptible (SM) and tolerant (SM92 lines revealed multiple genes to be differentially regulated upon YSB infestation. Comparative transcriptome analysis revealed a putative candidate gene that was predicted to encode an alpha-amylase inhibitor. Analysis of the transcriptome and metabolite profiles further revealed a possible link between phenylpropanoid metabolism and YSB tolerance.
Project description:Rice transitory yellow (RTYV) is the causal agent of rice transitory yellow disease which causes severe loss of rice yield in Asia countries. In this study, we have analyzed the relationship between symptom and host gene responses by RGDV infection.
Project description:Rice transitory yellow (RTYV) is the causal agent of rice transitory yellow disease which causes severe loss of rice yield in Asia countries. In this study, we have analyzed the relationship between symptom and host gene responses by RGDV infection. Comparison between RTYV and mock infected rice. Biological replicates: 3 control, 3 infected, independently grown and harvested. 1 samples derived from 5 plants grown under same conditons
Project description:To explore the molecular mechanisms underlying the rice plant-mediated interaction between brown planthopper (BPH) and striped stem borer (SSB), gene expression changes in rice plant response to infestation by SSB, BPH or both and control were analyzed by RNA-seq.
Project description:Stalk borers are major pests for some of the most important crops in the world, such as maize or rice. Plant defense mechanisms against these herbivores have been poorly investigated. The maize´s stalk responds to insect feeding activating defense genes including hormone biosynthetic-related or proteinase inhibitor transcripts. The most outstanding conclusion is that cells in the maize´s stalk undergo cell wall fortification after corn borer tunneling. We performed a gene expression profiling to identify those genes differentially expressed in maize after infestation with the corn borer S. nonagrioides.
Project description:Rice, the world’s most important food crop, is attacked by multiple herbivores and pathogens.the rice striped stem borer (SSB) Chilo suppressalis is one of another most important rice insect pests. Here, we use Affymetrix Whole-Genome rice arrays to detect SSB infestation responsive genes.
Project description:Purpose: transcriptome sequencing of Conopomorpha sinensis Methods: high-through Illumina HiSeqTM 2000 Results:66017 transcripts,35383 unigenes Conclusions:This study provided valuable transcriptome data for the litchi fruit borer, which was the first fundamental genomic basis for exploiting gene resources from the litchi fruit borer
Project description:Stalk borers are major pests for some of the most important crops in the world, such as maize or rice. Plant defense mechanisms against these herbivores have been poorly investigated. The maize´s stalk responds to insect feeding activating defense genes including hormone biosynthetic-related or proteinase inhibitor transcripts. The most outstanding conclusion is that cells in the maize´s stalk undergo cell wall fortification after corn borer tunneling. We performed a gene expression profiling to identify those genes differentially expressed in maize after infestation with the corn borer S. nonagrioides. Four genetically unrelated maize inbred lines (EP39, EP42, CM151 and PB130) were infested at VT (tasseling) developmental stage with a mass of approximately 40 eggs of S. nonagrioides laid on the sheath of the main ear. Another four biological replicates per genotype were used as control. Samples for RNA extraction were harvested fifteen days after infestation.