Project description:The little skate, a cartilaginous fish evolutionarily distal from tetrapods, displays walking-like behavior and has conserved genetic programs and neuronal substrates for land-walking. Studies on little skate have been limited due to lack of high-quality genome assembly. Here, we generated an improved genome assembly of little skate reflecting precise gene annotation and structures and performed integrated analysis of gene expression and chromatin accessibility to investigate molecular mechanisms of fin motor neuron development. Through interspecies comparison of RNA expression, common and species-specific genes expressed in fin/limb/wing level motor neurons were identified. Moreover, by performing chromatin accessibility analysis with a pure fin motor neuron population the potential regulators controlling the gene expression in fin motor neurons were identified. Interspecies comparison of genomic data, gene expression, and chromatin accessibility assay suggest that the little skate has highly conserved gene regulatory mechanisms controlling tetrapod locomotion, which was not previously expected.
Project description:The little skate, a cartilaginous fish evolutionarily distal from tetrapods, displays walking-like behavior and has conserved genetic programs and neuronal substrates for land-walking. Studies on little skate have been limited due to lack of high-quality genome assembly. Here, we generated an improved genome assembly of little skate reflecting precise gene annotation and structures and performed integrated analysis of gene expression and chromatin accessibility to investigate molecular mechanisms of fin motor neuron development. Through interspecies comparison of RNA expression, common and species-specific genes expressed in fin/limb/wing level motor neurons were identified. Moreover, by performing chromatin accessibility analysis with a pure fin motor neuron population the potential regulators controlling the gene expression in fin motor neurons were identified. Interspecies comparison of genomic data, gene expression, and chromatin accessibility assay suggest that the little skate has highly conserved gene regulatory mechanisms controlling tetrapod locomotion, which was not previously expected.
Project description:The process of producing the GRC zebrafish assembly included the high-quality sequencing and finishing of clones representing alternate haplotypes to corresponding regions in the current primary assembly. This project reports the variation between those alternate haplotype clones and the primary assembly.
Project description:Constructing high-quality haplotype-resolved genome assemblies has substantially improved the ability to detect and characterize genetic variants. A targeted approach providing readily access to the rich information from haplotype-resolved genome assemblies will be appealing to groups of basic researchers and medical scientists focused on specific genomic regions. Here, using the 4.5 megabase, notoriously difficult-to-assemble major histocompatibility complex (MHC) region as an example, we demonstrated an approach to construct haplotype-resolved assembly of the targeted genomic region with the CRISPR-based enrichment. Compared to the results from haplotype-resolved genome assembly, our targeted approach achieved comparable completeness and accuracy with reduced computing complexity, sequencing cost, as well as the amount of starting materials. Moreover, using the targeted assembled personal MHC haplotypes as the reference both improves the quantification accuracy for sequencing data and enables allele-specific functional genomics analyses of the MHC region. Given its highly efficient use of resources, our approach can greatly facilitate population genetic studies of targeted regions, and may pave a new way to elucidate the molecular mechanisms in disease etiology.