Project description:Origanum oil (ORO), garlic oil (GAO), and peppermint oil (PEO) were shown to effectively lower methane production, decrease abundance of methanogens, and change abundances of several bacterial populations important to feed digestion in vitro. In this study, the impact of these essential oils (EOs, at 0.50 g/L), on the rumen bacterial community composition was further examined using the recently developed RumenBactArray.
Project description:A healthy rumen is crucial for normal growth and improved production performance of ruminant animals. Rumen microbes participate in and regulate rumen epithelial function, and the diverse metabolites produced by rumen microbes are important participants in rumen microbe-host interactions. SCFAs, as metabolites of rumen microbes, have been widely studied, and propionate and butyrate have been proven to promote rumen epithelial cell proliferation. Succinate, as an intermediate metabolite in the citric acid cycle, is a final product in the metabolism of certain rumen microbes, and is also an intermediate product in the microbial synthesis pathway of propionate. However, its effect on rumen microbes and rumen epithelial function has not been studied. It is unclear whether succinate can stimulate rumen epithelial development. Therefore, in this experiment, Chinese Tan sheep were used as experimental animals to conduct a comprehensive analysis of the rumen microbiota community structure and rumen epithelial transcriptome, to explore the role of adding succinate to the diet in the interaction between the rumen microbiota and host.
Project description:The transcriptome of Escherichia coli K-12 has been widely studied over a variety of conditions for the past decade while such studies involving E. coli O157:H7, its pathogenic cousin, are just now being conducted. To better understand the impact of rumen fluid on E. coli O157:H7, global transcript levels of strain EDL933 cells resuspended in heat clarified rumen fluid for 15 min were compared to cells resuspended in fresh LB using microarrays. Seven independent RNA samples from rumen fluid treated cultures were paired with seven independent RNA samples from control cultures for hybridization to seven two-color microarrays. For three arrays, the control RNA sample was labeled with Cy3 dye and the experimental RNA sample was labeled with Cy5 dye, the dyes were reversed for the other four arrays to overcome dye bias.
Project description:As the unique organ, rumen plays vital roles in providing products for humans, however, the underlying cell composition and interactions with epithelium-attached microbes remain largely unknown. Herein, we performed an integrated analysis in single-cell transcriptome, epithelial microbiome, and metabolome of rumen tissues to explore the differences of microbiota-host crosstalk between newborn and adult cattle models. We found that fewer epithelial cell subtypes and more abundant immune cells (e.g., Th17 cells) in the rumen tissue of adult cattle. Metabolism-related functions and oxidation-reduction process were significantly upregulated in the adult rumen epithelial cell subtypes. The epithelial Desulfovibrio was significantly enriched in the adult cattle. To further clarify the role of Desulfovibrio in host’s oxidation-reduction process, we performed metabolomics analysis of rumen tissues and found that Desulfovibrio showed a high co-occurrence probability with the pyridoxal in the adult cattle compared with newborn ones. The adult rumen epithelial cell subtypes also showed stronger ability of pyridoxal binding. These indicates that Desulfovibrio and pyridoxal likely play important roles in maintaining redox balance in adult rumen. The integrated analysis provides novel insights into the understanding of rumen function and facilitate the future precision improvement of rumen function and milk/meat production in cattle.
Project description:Microbiome DNA from the adhering fraction of a sheep rumen. The RSTs were generated using an improved version of SARST (referred to as iSARST) from the microbiome DNA extracted from the adhering fraction of the rumen content taken from a sheep. The iSARST method is going to be submitted to Nature Biotechnology for publication. Keywords: other
Project description:Investigation of whole genome gene expression level changes in rumen epithelium of dairy cattle at different stages of rumen development and on different diets.
Project description:RNA sequencing (RNA-Seq) was performed on rumen papillae from 16 steers with variation in gain and feed intake. Sixteen rumen papillae samples were sequenced by Cofactor Genomics (St.Louis, MO).
Project description:Diseases caused by parasitic flatworms of rumen tissues (paramphistomosis) are a significant threat to global food security as a cause of morbidity and mortality in ruminant livestock in subtropical and tropical climates. Calicophoron daubneyi is currently the only paramphistome species commonly infecting livestock species in temperate European climates. However, recorded incidences of C. daubneyi infection in European livestock have been increasing over the last decade. Whilst clinical paramphistomosis caused by adult worms is currently uncommon in Europe, fatalities have been reported in association with severe haemorrhagic enteritis resulting from the migration of immature paramphistomes. Large numbers of mature adults can reside in the rumen, yet to date, the impact on rumen fermentation, and consequently in productivity and economic management of infected livestock have not been resolved. Limited public available nucleotide and protein sequences for C. daubneyi underpin this lack of biological and economic understanding. Here we present for the first time a de novo assembled transcriptome, with functional annotations, for adult C. daubneyi, which provides a reference database for protein and nucleotide sequence identification to facilitate fundamental biology, anthelmintic, vaccine and diagnostics discoveries. This dataset identifies a number of genes potentially unique to C. daubneyi and, by comparison to an existing transcriptome for the related Paramphistomum cervi, identifies novel genes which may be unique to the paramphistome group of platyhelminthes. Additionally, we present the first coverage of the excretory/secretory and soluble somatic proteome profiles for adult C. daubneyi and identify the release of extracellular vesicles from adult C. daubneyi parasites during in vitro, ex-host culture. Finally, we have performed the first analysis of rumen fluke impacting upon rumen fermentation parameters using an in vitro gas production study resulting in a significant increase in propionate production.