Project description:Even the latest generation of base editor (BE3) causes unwanted indels and non-C-to-T substitutions, compromising the fidelity of base editing outcome. Here we report a enhanced base editing system. The enhanced base edting system decreased the formation of unintended indels and C-to-A/C-to-G substitutions, and increased the frequency of desired C-to-T substitution, thereby improving both the accuracy and efficiency of base editing.
Project description:C-to-T base editing mediated by CRISPR/Cas9 base editors (BEs) needs a G/C-rich PAM and the editing fidelity is compromised by unwanted indels and non-C-to-T substitutions. We developed CRISPR/Cpf1-based BEs to recognize a T-rich PAM and induce efficient C-to-T editing with few indels and/or non-C-to-T substitutions. The requirement of editing fidelity in therapeutic-related trials necessitates the development of CRISPR/Cpf1-based BEs, which also facilitates base editing in A/T-rich regions.
Project description:Conjugation of CRISPR-Cas9 with cytidine deaminases leads to base editors (BEs) for programmable C-to-T editing, which holds potentials in clinical applications, but suffers from off-target (OT) mutations. By taking advantage of a cleavable deoxycytidine deaminase inhibitor (dCDI) domain, a transformer BE (tBE) system is developed to induce efficient editing with only background levels of genome-wide and transcriptome-wide OT mutations. After being produced, tBE remains inactive at OT sites with the fusion of a cleavable dCDI, thus eliminating unintended mutations. Only when binding at on-target sites, tBE is transformed to cleave off the dCDI domain and catalyzes targeted deamination for precise base changes. After delivery into mice via a dual-AAV system, tBE created a premature stop codon in Pcsk9 and significantly reduced serum PCSK9 level, which resulted in ~30-40% decrease of total cholesterol. Together, the development of tBE establishes a highly-precise base editing system and its in vivo efficacy envisions potential therapeutic applications.
Project description:Conjugation of CRISPR-Cas9 with cytidine deaminases leads to base editors (BEs) for programmable C-to-T editing, which holds potentials in clinical applications, but suffers from off-target (OT) mutations. By taking advantage of a cleavable deoxycytidine deaminase inhibitor (dCDI) domain, a transformer BE (tBE) system is developed to induce efficient editing with only background levels of genome-wide and transcriptome-wide OT mutations. After being produced, tBE remains inactive at OT sites with the fusion of a cleavable dCDI, thus eliminating unintended mutations. Only when binding at on-target sites, tBE is transformed to cleave off the dCDI domain and catalyzes targeted deamination for precise base changes. After delivery into mice via a dual-AAV system, tBE created a premature stop codon in Pcsk9 and significantly reduced serum PCSK9 level, which resulted in ~30-40% decrease of total cholesterol. Together, the development of tBE establishes a highly-precise base editing system and its in vivo efficacy envisions potential therapeutic applications.
Project description:CRISPR-Cas base editors are preferred tool for genome editing as they generate desired editing without any double strand break in the genome, as double stand break is detrimental to the cells. In our study we have demonstrated the significance of base editors in editing the highly homologous HBG promoter (HBG1 and HBG2) region to introduce novel HPFH-like mutation to elevate HbF for therapeutical applications. Previous studies revealed that the base editors can cause unintended Cas-independent edits at transcriptome level. To validate off-target at RNA level, we performed a transcriptome wide analysis. The frequency of unintended edits in the HUDEP-2 stable cell lines expressing the base editors with the gRNA were not significant compared to the control. We determined the ABE mediated A to I conversion and CBE mediated C to U conversion across the base edited samples. The RNA off-target analysis was carried out with the help of REDItools v 2 tool. This data suggests that despite high on-target editing in DNA, the Cas-independent RNA off-target were not at detectable range compared to control. The differential expression of 34 selected genes which necessitate globin regulation were compared between the unedited HUDEP WT, CBE control, ABE control, and edited ABE (with gRNA 2/11) and edited CBE (with gRNA 2/11). We observed that there is no significant differential gene expression between the edited and control cells except the gamma and delta globin genes. These results suggest that base editors are preferred tools to edit highly homologous HBG promoter region to created HPFH-like mutations inducing HbF levels without causing double strand breaks, larger deletions and no significant RNA off-targets which are detrimental to the gene edited cells.
Project description:Base editing introduces precise single-nucleotide edits in genomic DNA and has the potential to treat genetic diseases such as the blistering skin disease recessive dystrophic epidermolysis bullosa (RDEB), which is characterized by mutations in the COL7A1 gene and type VII collagen (C7) deficiency. Adenine base editors (ABEs) convert A-T base pairs to G-C base pairs without requiring double-stranded DNA breaks or donor DNA templates. Here, we use ABE8e, a recently evolved ABE, to correct primary RDEB fibroblasts harboring the recurrent RDEB nonsense mutation c.5047 C>T (p.Arg1683Ter) in exon 54 of COL7A1 and use a next generation sequencing workflow to interrogate post-treatment outcomes. Electroporation of ABE8e mRNA into a bulk population of RDEB patient fibroblasts resulted in remarkably efficient (94.6%) correction of the pathogenic allele, restoring COL7A1 mRNA and expression of C7 protein in western blots and in 3D skin constructs. Unbiased off-target DNA and RNA editing analysis did not detect off-target editing in treated patient-derived fibroblasts. Taken together, we have established a highly efficient pipeline for gene correction in primary fibroblasts with a favorable safety profile. This work lays a foundation for developing therapies for RDEB patients using ex vivo or in vivo base editing strategies.
Project description:The targeting range of CRISPR-Cas9 base editors (BEs) is limited by their G/C-rich PAM sequences. To overcome this limitation, we developed a CRISPR/Cpf1-based BE by fusing the rat cytosine deaminase APOBEC1 to a catalytically inactive version of Lachnospiraceae bacterium Cpf1. The base editor recognizes a T-rich PAM sequence and converts C to T in human cells with low levels of indels, non-C-to-T substitutions and off-target editing.
Project description:Precise genome editing is crucial for establishing isogenic human disease models and ex vivo stem cell therapy from the patient-derived human pluripotent stem cells (hPSCs). Unlike Cas9-mediated knock-in, cytosine base editor (CBE) and prime editor (PE) achieve the desirable gene correction without inducing DNA double strand breaks. However, hPSCs possess highly active DNA repair pathways and are particularly susceptible to p53-dependent cell death. These unique characteristics impede the efficiency of gene editing in hPSCs. Here, we demonstrate that dual inhibition of p53-mediated cell death and distinct activation of the DNA damage repair system upon DNA damage by CBE or PE additively enhanced editing efficiency in hPSCs. The BE4stem system comprised of dominant negative p53 (p53DD) and three UNG inhibitor (UGI), engineered to specifically diminish base excision repair (BER), improved CBE efficiency in hPSCs. Addition of dominant negative MLH1 to inhibit mismatch repair activity and p53DD in the conventional PE system also significantly enhanced PE efficiency in hPSCs. Thus, combined inhibition of the unique cellular cascades engaged in hPSCs upon gene editing could significantly enhance precise genome editing in these cells.
Project description:Genetic manipulations to increase fetal hemoglobin (HbF, α2γ2) in postnatal red blood cells (RBCs) can alleviate β-thalassemia and sickle cell disease. We compared five strategies in CD34+ hematopoietic stem and progenitor cells, using either Cas9 nuclease, which creates uncontrolled indel mixtures, or adenine base editors (ABE), which generate more precise nucleotide changes. The most potent modification was ABE generation of γ-globin (HBG1/HBG2) −175 A>G, which creates a promoter binding motif for the transcriptional activator TAL1. In erythroid colonies with >87.5% on-target edits, those with −175 A>G expressed 81 ± 7% HbF, versus 17 ± 11% in unedited controls. In comparison, HbF levels were lower and more variable in erythroid cells modified with either of two Cas9 nuclease strategies with similar editing efficiencies, being 32 ± 19% when a BCL11A repressor binding motif in the γ-globin promoter was targeted and 52 ± 13% when the +58 BCL11A erythroid enhancer was targeted. Contrary to currently accepted models of γ-globin regulation, HbF levels varied significantly with different Cas9 indels that disrupted the γ-globin promoter BCL11A binding motif. The −175 A>G base edit also induced HbF more potently than did the Cas9 nuclease approaches in RBCs generated after transplantation of modified normal or SCD patient CD34+ cells into mice. Our data suggest a strategy for potent, uniform induction of HbF and provide insights into γ-globin gene regulation. More generally, we demonstrate that diverse indels generated by Cas9 nuclease can cause unexpected variations in biological outcomes that can be circumvented by base editing, with important implications for therapeutic gene editing efforts.
Project description:Programmable base editing of RNA enables rewriting the genetic codes on specific sites. Current tools for specific RNA editing dependent on the assembly or recruitment of the guide RNA into an RNA/protein complex, which may cause delivery barrier and low editing efficiency. Here we report a new set of tools, RNA editing with individual RNA-binding enzyme (REWIRE), to perform precise base editing with a single engineered protein. The REWIRE system contains a human-originated programmable RNA-binding domain (PUF domain) to specifically recognize target sequence and different deaminase domains to achieve A-to-I or C-to-U editing. By utilizing this system, we have achieved editing efficiencies up to 80% in A-to-I editing and 65% in C-to-U editing, with a few non-specific editing sites in the targeted region and a low level off-target effect globally. We applied the REWIREs to correct disease-associated mutations and modify mitochondrial RNAs, and further optimized the REWIREs to improve the editing efficiency and minimize off-target effects. As a single-component base editing system originated from human proteins, REWIRE presents a precise and efficient RNA-editing platform with broad applicability in basic research and gene therapy.