Project description:Understanding and quantifying the effects of environmental factors influencing the variation of abundance and diversity of microbial communities was a key theme of ecology. For microbial communities, there were two factors proposed in explaining the variation in current theory, which were contemporary environmental heterogeneity and historical events. Here, we report a study to profile soil microbial structure, which infers functional roles of microbial communities, along the latitudinal gradient from the north to the south in China mainland, aiming to explore potential microbial responses to external condition, especially for global climate changes via a strategy of space-for-time substitution. Using a microarray-based metagenomics tool named GeoChip 5.0, we showed that microbial communities were distinct for most but not all of the sites. Using substantial statistical analyses, exploring the dominant factor in influencing the soil microbial communities along the latitudinal gradient. Substantial variations were apparent in nutrient cycling genes, but they were in line with the functional roles of these genes. 300 samples were collected from 30 sites along the latitudinal gradient, with 10 replicates in every site
Project description:Understanding and quantifying the effects of environmental factors influencing the variation of abundance and diversity of microbial communities was a key theme of ecology. For microbial communities, there were two factors proposed in explaining the variation in current theory, which were contemporary environmental heterogeneity and historical events. Here, we report a study to profile soil microbial structure, which infers functional roles of microbial communities, along the latitudinal gradient from the north to the south in China mainland, aiming to explore potential microbial responses to external condition, especially for global climate changes via a strategy of space-for-time substitution. Using a microarray-based metagenomics tool named GeoChip 5.0, we showed that microbial communities were distinct for most but not all of the sites. Using substantial statistical analyses, exploring the dominant factor in influencing the soil microbial communities along the latitudinal gradient. Substantial variations were apparent in nutrient cycling genes, but they were in line with the functional roles of these genes.
2015-05-23 | GSE69171 | GEO
Project description:Barcoding MarineGEO’s cryptic microscopic diversity along a latitudinal gradient
Project description:Patterns in functional diversity of organisms at large spatial scales can provide insight into possible responses to future climate change, but it remains a challenge to link large-scale patterns at the organismal level to their underlying physiological mechanisms. The climate variability hypothesis predicts that temperate ectotherms will be less vulnerable to climate warming than tropical ectotherms, due to their superior acclimatization capacity.We investigate thermal acclimation of three species of Takydromus lizards distributed along a broad latitudinal gradient in China, by studying metabolic modifications at the level of the whole organism,organ, mitochondria, metabolome, and proteome.
2021-12-12 | PXD029083 | Pride
Project description:Oceanic microplankton do not adhere to the latitudinal diversity gradient
Project description:Foxp3+ regulatory T cells (Tregs) in the colon are key to promoting peaceful co-existence with symbiotic microbes. Differentiated in either thymic or peripheral locations, and modulated by microbes and other cellular influencers, colonic Treg subsets have been identified through key transcription factors (TF; Helios, Rorg, Gata3, cMaf), but their inter-relationships are unclear. Here, we perform genomic analysis of colonic lamina propria Tregs with conditional KOs of each of these TFs to better understand how each TF contributes to colonic Treg identity and function.
Project description:Within the human gut reside diverse microbes coexisting with the host in a mutually advantageous relationship. We comprehensively identified the modulatory effects of phylogenetically diverse human gut microbes on the murine intestinal transcriptome. Gene-expression profiles were generated from the whole-tissue intestinal RNA of mice colonized with various single microbial strains. The selection of microbe-specific effects, from the transcriptional response, yielded only a small number of transcripts, indicating that symbiotic microbes have only limited effects on the gut transcriptome overall. Moreover, none of these microbe-specific transcripts was uniformly induced by all microbes. Interestingly, these responsive transcripts were induced by some microbes but repressed by others, suggesting different microbes can have diametrically opposed consequences.
2017-02-16 | GSE88919 | GEO
Project description:Soil microbial communities in Andean ecosystems, latitudinal gradient.
| PRJNA679783 | ENA
Project description:Microbiomes of agricultural soils along a latitudinal gradient