Project description:In rodents, brown adipose tissue (BAT) contributes to whole body energy expenditure and low BAT activity is related to hepatic fat accumulation, partially attributable to the gut microbiome. Little is known of these relationships in humans. In adults (n=60), we assessed hepatic fat and cold-stimulated BAT activity utilizing magnetic resonance imaging and the gut microbiome with 16S sequencing. We transplanted gnotobiotic mice with feces from humans to assess the transferability of BAT activity and NAFLD through the microbiome. Individuals with NAFLD (n=29) had lower BAT activity than those without and BAT activity was inversely related to hepatic fat. Although the fecal microbiome was different in those with NAFLD, no differences were observed in relation to BAT activity and neither of these phenotypic traits were transmissible through fecal transplant to gnotobiotic mice. Thus, low BAT activity is associated with hepatic steatosis but this is not mediated through the gut microbiota.
Project description:Verotoxigenic Escherichia coli (VTEC) are a leading cause of food-borne illness. Fruit and vegetables are recognised as an important source of the pathogen and can account for ~ 25 % of food-borne VTEC outbreaks, globally. The ability of VTEC to colonise leaves and roots of leafy vegetables, spinach (Spinacia oleracea) and lettuce (Lactuca sativa), was compared. The highest levels of colonisation occurred in the roots and rhizosphere, whereas colonisation of the leaves was lower and significantly different between the species. Colonisation of the leaves of prickly lettuce (L. serriola), a wild relative of domesticated lettuce, was especially poor. Differential VTEC gene expression in spinach extracts was markedly different for three tissue types, with little overlap. Comparison of expression in the same tissue type, cell wall polysaccharides, for lettuce and spinach also showed substantial differences, again with virtually no overlap. The transcriptional response was largely dependent on temperatures that are relevant to plant growth, not warm-blooded animals. The data show that VTEC adaptation to plant hosts and subsequent colonisation potential is underpinned by wholescale changes in gene expression that are specific to both plant tissue type and to the species.
Project description:Verotoxigenic Escherichia coli (VTEC) are a leading cause of food-borne illness. Fruit and vegetables are recognised as an important source of the pathogen and can account for ~ 25 % of food-borne VTEC outbreaks, globally. The ability of VTEC to colonise leaves and roots of leafy vegetables, spinach (Spinacia oleracea) and lettuce (Lactuca sativa), was compared. The highest levels of colonisation occurred in the roots and rhizosphere, whereas colonisation of the leaves was lower and significantly different between the species. Colonisation of the leaves of prickly lettuce (L. serriola), a wild relative of domesticated lettuce, was especially poor. Differential VTEC gene expression in spinach extracts was markedly different for three tissue types, with little overlap. Comparison of expression in the same tissue type, cell wall polysaccharides, for lettuce and spinach also showed substantial differences, again with virtually no overlap. The transcriptional response was largely dependent on temperatures that are relevant to plant growth, not warm-blooded animals. The data show that VTEC adaptation to plant hosts and subsequent colonisation potential is underpinned by wholescale changes in gene expression that are specific to both plant tissue type and to the species.
Project description:Healthy plants are vital for successful, long-duration missions in space, as they provide the crew with life support, food production, and psychological benefits. The microorganisms that associate with plant tissues play a critical role in improving plant growth, health, and production. To that end, it is necessary to develop methodologies that investigate the metabolic activities of the plant’s microbiome in orbit to enable rapid responses regarding the care of plants in space. In this study, we developed a protocol to characterize the endophytic and epiphytic microbial metatranscriptome of red romaine lettuce, a key salad crop that was grown under International Space Station (ISS)-like conditions. Microbial transcripts enriched from host-microbe total RNA were sequenced using the Oxford Nanopore MinION sequencing platform. Results showed that this enrichment approach was highly reproducible and effective for rapid on-site detection of microbial transcriptional activity. Taxonomic analysis based on 16S and 18S rRNA transcripts identified that the top five most abundant phyla in the lettuce microbiome were Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and Ascomycota. The metatranscriptomic analysis identified the expression of genes involved in many metabolic pathways, including carbohydrate metabolism, energy metabolism, and signal transduction. Network analyses of the expression data show that, within the signal transduction pathway of the fungal community, the Mitogen-Activated Protein Kinase signaling pathway was tightly regulated across all samples and could be a potential driver for fungal proliferation. Our results demonstrated the feasibility of using MinION-based metatranscriptomics of enriched microbial RNA as a method for rapid, on-site monitoring of the transcriptional activity of crop microbiomes, thereby helping to facilitate and maintain plant health for on-orbit space food production.
Project description:Various microbes isolated from healthy plants are detrimental under laboratory conditions, indicating the existence of molecular mechanisms preventing disease in nature. Here, we demonstrated that application of sodium chloride (NaCl) in natural and gnotobiotic soil systems is needed to induce plant disease caused by an otherwise non-pathogenic root-derived Pseudomonas brassicacearum isolate (R401). Disease caused by combinatorial treatment of NaCl and R401 triggered extensive, root-specific transcriptional reprogramming that did not involve down-regulation of host innate immune genes, nor dampening of ROS-mediated immunity. Instead, we identified and structurally characterized the R401 lipopeptide brassicapeptin A as necessary and sufficient to promote disease on salt-treated plants. Brassicapeptin A production transitions R401 from being beneficial to being detrimental on salt-treated plants by disturbing host ion homeostasis, thereby bolstering bacterial infection and susceptibility to osmolytes. We conclude that the interaction between a global change stressor and a bacterial exometabolite drives disease emergence in the plant microbiome.
Project description:Flavonoids are stress-inducible metabolites important for plant-microbe interactions. In contrast to their well-known function in initiating rhizobia nodulation in legumes, it is unclear whether and how flavonoids may contribute to plant stress resistance through affecting non-nodulating bacteria in the root microbiome. Here we show how flavonoids preferentially attracts Aeromonadaceae in Arabidopsis thaliana root microbiome and how flavonoid-dependent recruitment of an Aeromona spp. results in enhanced plant Na_H1 resistance.