Project description:In this work we used metaproteomics to study the effect of pH and nitrogen source on cyanobacterial growth of the laboratory cultures. The database for protein identification was obtained from assembled metagenomes.
Project description:In this work we used stable isotope probing/proteomics to study uptake of carbon sources by members of the cyanobacterial consortium. The database for protein identification was obtained from assembled metagenomes.
Project description:A photosynthetic cyanobacterial/microbial consortium was incubated in the dark for 12 days. During the course of this dark incubation, samples were taken every two days from the biomass portion and the liquid (supernatant) portion of the bioreactor. Metaproteomics analysis was conducted on these time series samples and binned and assembled metagenomes from the same samples were used as the database for protein identification.
Project description:Previous molecular and mechanistic studies have identified several principles of prokaryotic transcription, but less is known about the global transcriptional architecture of bacterial genomes. Here we perform a comprehensive study of a cyanobacterial transcriptome, that of Synechococcus elongatus PCC 7942, generated by combining three high-resolution data sets: RNA sequencing, tiling expression microarrays, and RNA polymerase chromatin immunoprecipitation (ChIP) sequencing. We report absolute transcript levels, operon identification, and high-resolution mapping of 5' and 3' ends of transcripts. We identify several interesting features at promoters, within transcripts and in terminators relating to transcription initiation, elongation, and termination. Furthermore, we identify many putative non-coding transcripts. We provide a global analysis of a cyanobacterial transcriptome. Our results uncover insights that reinforce and extend the current views of bacterial transcription. RNA Sequencing of the cyanobacterium Synechococcus elongatus PCC 7942 RNA polymerase ChIP Sequencing of the cyanobacterium Synechococcus elongatus PCC 7942 Tiling Microarray of the cyanobacterium Synechococcus elongatus PCC 7942
Project description:Previous molecular and mechanistic studies have identified several principles of prokaryotic transcription, but less is known about the global transcriptional architecture of bacterial genomes. Here we perform a comprehensive study of a cyanobacterial transcriptome, that of Synechococcus elongatus PCC 7942, generated by combining three high-resolution data sets: RNA sequencing, tiling expression microarrays, and RNA polymerase chromatin immunoprecipitation (ChIP) sequencing. We report absolute transcript levels, operon identification, and high-resolution mapping of 5' and 3' ends of transcripts. We identify several interesting features at promoters, within transcripts and in terminators relating to transcription initiation, elongation, and termination. Furthermore, we identify many putative non-coding transcripts. We provide a global analysis of a cyanobacterial transcriptome. Our results uncover insights that reinforce and extend the current views of bacterial transcription.