Project description:Cable bacteria of the family Desulfobulbaceae form centimeter-long filaments comprising thousands of cells. They occur worldwide in the surface of aquatic sediments, where they connect sulfide oxidation with oxygen or nitrate reduction via long-distance electron transport. In the absence of pure cultures, we used single-filament genome amplification and metagenomics to retrieve draft genomes of three marine Candidatus Electrothrix and one freshwater Ca. Electronema species. These genomes contain >50% of unknown genes but still largely share their core genomic makeup with sulfate-reducing and sulfur-disproportionating Desulfobulbaceae, with few genes lost and 212 unique genes conserved among cable bacteria. Last common ancestor analysis indicated gene divergence and lateral gene transfer as equally important origins of these unique genes. With support from metaproteomic data of Ca. Electronema, the genomes suggest that cable bacteria oxidize sulfide by inversing the canonical sulfate reduction pathway and fix CO2 using the Wood-Ljungdahl pathway. Cable bacteria show limited organotrophic potential, may assimilate smaller organic acids and alcohols, fix N2, and synthesize polyphosphates and polyglucose as storage compounds; several of these traits were confirmed by cell-level experimental analyses. We propose a model for electron flow from sulfide to oxygen that involves periplasmic cytochromes, type IV pili as integral components of conductive periplasmic fibers, and periplasmic oxygen reduction. This model proposes that an active cable bacterium gains energy in the anodic, sulfide-oxidizing cells, while cells in the oxic zone flare off electrons through intense cathodic oxygen respiration without energy conservation; this peculiar form of multicellularity seems unparalleled in the microbial world.
Project description:Metagenome sequencing of samples suspected of featuring cable bacteria genomic DNA with short (Illumina NovaSeq) and long read (Nanopore R9.4.1) sequencing platforms.
Project description:Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are competing microbial nitrate-reduction processes. The occurrence of DNRA has been shown to be effected qualitatively by various parameters in the environment. A more quantitative understanding can be obtained using enrichment cultures in a laboratory reactor, yet no successful DNRA enrichment culture has been described. We showed that a stable DNRA-dominated enrichment culture can be obtained in a chemostat system. The enrichment was based on the hypothesis that nitrate limitation is the dominant factor in selecting for DNRA. First, a conventional denitrifying culture was enriched from activated sludge, with acetate and nitrate as substrates. Next, the acetate concentration in the medium was increased to obtain nitrate-limiting conditions. As a result, conversions shifted from denitrification to DNRA. In this selection of a DNRA culture, two important factors were the nitrate limitation and a relatively low dilution rate (0.026 h(-1)). The culture was a highly enriched population of Deltaproteobacteria most closely related to Geobacter lovleyi, based on 16S rRNA gene sequencing (97% similarity). We established a stable and reproducible cultivation method for the enrichment of DNRA bacteria in a continuously operated reactor system. This enrichment method allows to further investigate the DNRA process and address the factors for competition between DNRA and denitrification, or other N-conversion pathways.
Project description:Cable bacteria are multicellular sulfide oxidizing bacteria that display a unique metabolism based on long-distance electron transport. Cells in deeper sediment layers perform the sulfide oxidizing half-reaction whereas cells in the surface layers of the sediment perform the oxygen-reducing half-reaction. These half-reactions are coupled via electron transport through a conductive fiber network that runs along the shared cell envelope. Remarkably, only the sulfide oxidizing half-reaction is coupled to biosynthesis and growth whereas the oxygen reducing half-reaction serves to rapidly remove electrons from the conductive fiber network and is not coupled to energy generation and growth. Cells residing in the oxic zone are believed to (temporarily) rely on storage compounds of which polyphosphate (poly-P) is prominently present in cable bacteria. Here we investigate the role of poly-P in the metabolism of cable bacteria within the different redox environments. To this end, we combined nanoscale secondary ion mass spectrometry with dual-stable isotope probing (13C-DIC and 18O-H2O) to visualize the relationship between growth in the cytoplasm (13C-enrichment) and poly-P activity (18O-enrichment). We found that poly-P was synthesized in almost all cells, as indicated by 18O enrichment of poly-P granules. Hence, poly-P must have an important function in the metabolism of cable bacteria. Within the oxic zone of the sediment, where little growth is observed, 18O enrichment in poly-P granules was significantly lower than in the suboxic zone. Thus, both growth and poly-P metabolism appear to be correlated to the redox environment. However, the poly-P metabolism is not coupled to growth in cable bacteria, as many filaments from the suboxic zone showed poly-P activity but did not grow. We hypothesize that within the oxic zone, poly-P is used to protect the cells against oxidative stress and/or as a resource to support motility, while within the suboxic zone, poly-P is involved in the metabolic regulation before cells enter a non-growing stage.
Project description:In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage.
Project description:UnlabelledCable bacteria are filamentous bacteria that electrically couple sulfide oxidation and oxygen reduction at centimeter distances, and observations in sediment environments have suggested that they are motile. By time-lapse microscopy, we found that cable bacteria used gliding motility on surfaces with a highly variable speed of 0.5 ± 0.3 μm s(-1) (mean ± standard deviation) and time between reversals of 155 ± 108 s. They frequently moved forward in loops, and formation of twisted loops revealed helical rotation of the filaments. Cable bacteria responded to chemical gradients in their environment, and around the oxic-anoxic interface, they curled and piled up, with straight parts connecting back to the source of sulfide. Thus, it appears that motility serves the cable bacteria in establishing and keeping optimal connections between their distant electron donor and acceptors in a dynamic sediment environment.ImportanceThis study reports on the motility of cable bacteria, capable of transmitting electrons over centimeter distances. It gives us a new insight into their behavior in sediments and explains previously puzzling findings. Cable bacteria greatly influence their environment, and this article adds significantly to the body of knowledge about this organism.