Project description:We explored seasonal gene expression profiles in the Yoshino cherry trees (Cerasus × yedoensis ‘Somei-yoshino’) at three distinct sites, each situated at varying latitudes in Japan. Our goal was to gather molecular phenology data that could provide insights into mechanism of bud dormancy. The molecular phenology approach, which monitors the seasonal dynamics of global gene expression profiles in leaves and buds under natural conditions, enables the study of physiological responses to seasonal environmental changes at the molecular level.
Project description:Bud dormancy is a crucial stage in perennial trees and allows survival over winter and optimal subsequent flowering and fruit production. Environmental conditions, and in particular temperature, have been shown to influence bud dormancy. Recent work highlighted some physiological and molecular events happening during bud dormancy in trees. However, we still lack a global understanding of transcriptional changes happening during bud dormancy. We conducted a fine tune temporal transcriptomic analysis of sweet cherry (Prunus avium L.) flower buds from bud organogenesis until the end of bud dormancy using next-generation sequencing. We observe that buds in organogenesis, paradormancy, endodormancy and ecodormancy are characterised by distinct transcriptional states, and associated with different pathways. We further identified that endodormancy can be separated in two phases based on its transcriptomic state: early and late endodormancy. We also found that transcriptional profiles of just 7 genes are enough to predict the main cherry tree flower buds dormancy stages. Our results indicate that transcriptional changes happening during dormancy are robust and conserved between different sweet cherry cultivars. Our work also sets the stage for the development of a fast and cost effective diagnostic tool to molecularly define the flower bud stage in cherry trees.
Project description:Temperate perennial plants have to adapt their growth in order to survive over winter conditions and protect their tissues by entering into dormancy. The dormancy phenomenon is a complex process regulated by many factors, externals (photoperiod and temperature) or internals through the transport towards the buds. In order to better understand the molecular mechanisms involved in the regulation of dormancy, we conducted a transcriptomic analysis of flower buds from the late flowering sweet cherry cultivar 'Fertard' during dormancy, from October 2017 to March 2018.
Project description:Correlation analysis of the expression of bud dormancy-related genes in 10 peach cultivars, with different chilling requirements for dormancy release.
Project description:Chromatin immunoprecipitation-sequencing (ChIP-seq) is a robust technique to study interactions between proteins, such as histones or transcription factors, and DNA. This technique in combination with RNA-sequencing (RNA-seq) is a powerful tool to better understand biological processes in eukaryotes. We developed a combined ChIP-seq and RNA-seq protocol for tree buds (Prunus avium L., Prunus persica L Batch, Malus x domestica Borkh.) that has also been successfully tested on Arabidopsis thaliana and Saccharomyces cerevisiae. Tree buds contain phenolic compounds that negatively interfere with ChIP and RNA extraction. In addition to solving this problem, our protocol is optimised to work on small amounts of material. Furthermore, one of the advantages of this protocol is that samples for ChIP-seq are cross-linked after flash freezing, making it possible to work on trees growing in the field and to perform ChIP-seq and RNA-seq on the same starting material. Focusing on dormant buds in sweet cherry, we explored the link between expression level and H3K4me3 enrichment for all genes, including a strong correlation between H3K4me3 enrichment at the DORMANCY-ASSOCIATED MADS-box 5 (PavDAM5) loci and its expression pattern. This protocol will allow analysis of chromatin and transcriptomic dynamics in tree buds, notably during its development and response to the environment.