Project description:Murine Pulmonary Responses to Ambient Baltimore Particulate Matter: Genomic Analysis and Contribution to Airway Hyperresponsiveness; Asthma is a complex disease characterized by airway hyperresponsiveness (AHR) and chronic airway inflammation. Environmental factors such as ambient particulate matter (PM), a major air pollutant, has been demonstrated in epidemiological studies to contribute to asthma exacerbation and increased asthma prevalence. OBJECTIVE: We investigated the genomic and pathophysiological effects of Baltimore PM (median diameter 1.78 µm) in a murine model of asthma to identify potential biomarkers. METHODS: A/J mice with ovalbumin (OVA) âinduced AHR were exposed to PM (20 mg/kg, intratracheal), and both AHR and bronchoalveolar lavage (BAL) were assayed on days 1, 4, and 7 post exposure. Lung gene expression profiling (Affymetrix Mouse430_ 2.0) by PM (20 mg/kg, intratracheal) were assayed on OVA- and / or PM--challenged mice. RESULTS: Significant increases of airway responsiveness in OVA-treated mice were observed, indicating an asthmatic phenotype. Ambient PM exposure induced significant changes in AHR in both naive mice and OVA-induced asthmatic mice. In both naive and OVA challenged asthmatic mice, PM induced eosinophil and neutrophil infiltration into airways, elevated BAL protein content, and stimulated secretion of TH1 cytokines (IFN-g, IL-6, and TNF-a) and TH2 cytokines (IL-4, IL-5, and eotaxin) into BAL. Consistent with these results, PM induced expression of genes of innate immune response, chemotaxis and complementary system. CONCLUSION: These studies, consistent with epidemiological data, indicate that PM increases AHR and lung inflammation in naïve mice and exacerbates the asthma phenotype of increased AHR and gene expression pattern changes correlated with acute lung inflammation and airway damage. We used microarrays to detail the global programme of gene expression induced by rhPBEF treatment and VALI. Experiment Overall Design: animals were treated by PBS, Oval albumin, PM, or both OVA/PM
Project description:Murine Pulmonary Responses to Ambient Baltimore Particulate Matter: Genomic Analysis and Contribution to Airway Hyperresponsiveness Asthma is a complex disease characterized by airway hyperresponsiveness (AHR) and chronic airway inflammation. Environmental factors such as ambient particulate matter (PM), a major air pollutant, has been demonstrated in epidemiological studies to contribute to asthma exacerbation and increased asthma prevalence. OBJECTIVE: We investigated the genomic and pathophysiological effects of Baltimore PM (median diameter 1.78 µm) in a murine model of asthma to identify potential biomarkers. METHODS: A/J mice with ovalbumin (OVA) –induced AHR were exposed to PM (20 mg/kg, intratracheal), and both AHR and bronchoalveolar lavage (BAL) were assayed on days 1, 4, and 7 post exposure. Lung gene expression profiling (Affymetrix Mouse430_ 2.0) by PM (20 mg/kg, intratracheal) were assayed on OVA- and / or PM--challenged mice. RESULTS: Significant increases of airway responsiveness in OVA-treated mice were observed, indicating an asthmatic phenotype. Ambient PM exposure induced significant changes in AHR in both naive mice and OVA-induced asthmatic mice. In both naive and OVA challenged asthmatic mice, PM induced eosinophil and neutrophil infiltration into airways, elevated BAL protein content, and stimulated secretion of TH1 cytokines (IFN-g, IL-6, and TNF-a) and TH2 cytokines (IL-4, IL-5, and eotaxin) into BAL. Consistent with these results, PM induced expression of genes of innate immune response, chemotaxis and complementary system. CONCLUSION: These studies, consistent with epidemiological data, indicate that PM increases AHR and lung inflammation in naïve mice and exacerbates the asthma phenotype of increased AHR and gene expression pattern changes correlated with acute lung inflammation and airway damage. We used microarrays to detail the global programme of gene expression induced by rhPBEF treatment and VALI. Keywords: gene expression
Project description:To seek whether seasonal variation in environmental particulate matter composition affected the global gene response patterns in cultured human cells representing pulmonary and systemic vascular targets. We used microarrays to detail the global program of gene expression affected on different cells type by different seasonal collections of Ambient Particulate Matter. After treatment with 10 ug/mL either summer2006 or winter2007APM, endothelial or bronchail epithelial cells were isolated by RNA extraction and hybridization on Affymetrix microarrays. We sought to obtain the genes responses correlated with current concepts of systemic inflammation in cardiovascular effects of particulate air pollution.
Project description:Particulate Matter Triggers Carotid Body Dysfunction, Respiratory Dysynchrony and Cardiac Arrhythmias in Mice with Cardiac Failure; The mechanistic link between human exposure to airborne particulate matter (PM) pollution and the increased cardiovascular morbidity and mortality observed in people with congestive heart failure (CHF) is unknown. We now show that exposure of genetically-engineered mice with CHF (expressing a cardiac-specific CREB mutant transcription factor) to ambient PM (collected in Baltimore, mean aerodynamic diameter 1.9 um) unmasks severe autonomic morbidities manifested as significant reductions in heart rate variability, respiratory dysynchrony and increased frequency of serious ventricular arrhythmias, features not observed in PM-challenged wild type mice without CHF. PM exposure in CREB mice with CHF reflexly triggers autonomic dysfunction via heightened carotid body function as evidenced by pronounced afferent nerve responses to hypoxia and marked depression of breathing by hyperoxia challenge. Genomic analyses of lung and ventricular tissues revealed PM-induced molecular signatures of inflammation and oxidative stress. These findings in a murine model of cardiac failure provide the first direct assessment of autonomic function in response to PM challenge and are highly consistent with current epidemiologic findings on cardiovascular morbidity in susceptible PM-exposed human populations. We utilized a murine model of dilated cardiomyopathy to address potential mechanistic links between PM exposure and the development of life-threatening cardiac dysrhythmias. Experiment Overall Design: four group (n=3) of animals were treated by PBS or particulate matter (20mg/kg 1.9µm particulate matter) in Wild type or CD-1 dominate negative mice
Project description:To seek whether seasonal variation in environmental particulate matter composition affected the global gene response patterns in cultured human cells representing pulmonary and systemic vascular targets. We used microarrays to detail the global program of gene expression affected on different cells type by different seasonal collections of Ambient Particulate Matter.
Project description:Particulate Matter Triggers Carotid Body Dysfunction, Respiratory Dysynchrony and Cardiac Arrhythmias in Mice with Cardiac Failure The mechanistic link between human exposure to airborne particulate matter (PM) pollution and the increased cardiovascular morbidity and mortality observed in people with congestive heart failure (CHF) is unknown. We now show that exposure of genetically-engineered mice with CHF (expressing a cardiac-specific CREB mutant transcription factor) to ambient PM (collected in Baltimore, mean aerodynamic diameter 1.9 um) unmasks severe autonomic morbidities manifested as significant reductions in heart rate variability, respiratory dysynchrony and increased frequency of serious ventricular arrhythmias, features not observed in PM-challenged wild type mice without CHF. PM exposure in CREB mice with CHF reflexly triggers autonomic dysfunction via heightened carotid body function as evidenced by pronounced afferent nerve responses to hypoxia and marked depression of breathing by hyperoxia challenge. Genomic analyses of lung and ventricular tissues revealed PM-induced molecular signatures of inflammation and oxidative stress. These findings in a murine model of cardiac failure provide the first direct assessment of autonomic function in response to PM challenge and are highly consistent with current epidemiologic findings on cardiovascular morbidity in susceptible PM-exposed human populations. We utilized a murine model of dilated cardiomyopathy to address potential mechanistic links between PM exposure and the development of life-threatening cardiac dysrhythmias.
Project description:This study aimed to shed light on the gene regulatory networks underlying plant leaf responses to air particulate matter. Our investigation focused on shrubs of Photinia x fraseri grown in pots located in two contrasting areas: a highly polluted traffic road and rural countryside within the same town (Altopascio, Lucca, Italy). RNA-seq data were related to leaf morphological traitsand air particulate matter, allowing to identify key players in modulating the capabilities of plants to phyllo-remediate high air particulate matter levels in urban environment.
Project description:This study aimed to shed light on the gene regulatory networks underlying plant leaf responses to air particulate matter. Our investigation focused on autochthonous shrubs of laurel (Laurus nobilis L.) grown in pots located in two contrasting areas: a highly polluted traffic road and rural countryside within the same town (Altopascio, Lucca, Italy). RNA-seq data were related to leaf morphological traits and air particulate matter, allowing to identify key players in modulating the capabilities of plants to phyllo-remediate high air particulate matter levels in urban environment.