Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:BackgroundNitroreductases are a family of evolutionarily related proteins catalyzing the reduction of nitro-substituted compounds. Nitroreductases are widespread enzymes, but nearly all modern research and practical application have been concentrated on the bacterial proteins, mainly nitroreductases of Escherichia coli. The main aim of this study is to describe the phylogenic distribution of the nitroreductases in the photosynthetic eukaryotes (Viridiplantae) to highlight their structural similarity and areas for future research and application.ResultsThis study suggests that homologs of nitroreductase proteins are widely presented also in Viridiplantae. Maximum likelihood phylogenetic tree reconstruction method and comparison of the structural models suggest close evolutional relation between cyanobacterial and Viridiplantae nitroreductases.ConclusionsThis study provides the first attempt to understand the evolution of nitroreductase protein family in Viridiplantae. Our phylogeny estimation and preservation of the chloroplasts/mitochondrial localization indicate the evolutional origin of the plant nitroreductases from the cyanobacterial endosymbiont. A defined high level of the similarity on the structural level suggests conservancy also for the functions. Directions for the future research and industrial application of the Viridiplantae nitroreductases are discussed.
Project description:Members of the phloem protein 16 (PP16) gene family are induced by elicitors in rice and the corresponding proteins from cucurbits, which display RNA binding and intercellular transport activities, are accumulated in phloem sap. These proteins facilitate the movement of protein complexes through the phloem translocation flow and may be involved in the response to water deficit, among other functions. However, there is scant information regarding their function in other plants, including the identification of paralog genes in non-vascular plants and chlorophytes. In the present work, an evolutionary and structural analysis of the PP16 family in green plants (Viridiplantae) was carried out. Data mining in different databases indicated that PP16 likely originated from a larger gene present in an ancestral lineage that gave rise to chlorophytes and multicellular plants. This gene encodes a protein related to synaptotagmin, which is involved in vesicular transport in animal systems, although other members of this family play a role in lipid turnover in endomembranes and organelles. These proteins contain a membrane-binding C2 domain shared with PP16 proteins in vascular plants. In silico analysis of the predicted structure of the PP16 protein family identified several β-sheets, one α-helix, and intrinsically disordered regions. PP16 may have been originally involved in vesicular trafficking and/or membrane maintenance but specialized in long-distance signaling during the emergence of the plant vascular system.