Project description:Dry bean (Phaseolus vulgaris L.) seeds are a rich source of dietary zinc, especially for people consuming plant-based diets. Within P. vulgaris there is at least two-fold variation in seed Zn concentration. Genetic studies have revealed seed Zn differences to be controlled by a single gene in two closely related navy bean genotypes, Albion and Voyager. In this study, these two genotypes were grown under controlled fertilization conditions and the Zn concentration of various plant parts were determined. The two genotypes had similar levels of Zn in their leaves and pods but Voyager had 52% more Zn in its seeds than Albion. RNA was sequence from developing pods of both genotypes. Transcriptome analysis of these genotypes identified 27,198 genes in the developing bean pods, representing 86% of the genes in the P. vulgaris genome (v 1.0 DOE-JGI and USDA-NIFA). Expression was detected in 18,438 genes. A relatively small number of genes (381) were differentially expressed between Albion and Voyager. Differentially expressed genes included three genes potentially involved in Zn transport, including zinc-regulated transporter, iron regulated transporter like (ZIP), zinc-induced facilitator (ZIF) and heavy metal associated (HMA) family genes. In addition 12,118 SNPs were identified between the two genotypes. Of the gene families related to Zn and/or Fe transport, eleven genes were found to contain SNPs between Albion and Voyager.
Project description:P. syringae pv. phaseolicola is the causal agent of the halo blight disease of beans (Phaseolus vulgaris L). The disease attacks both foliage and pods of plant host. Many genes involve in pathogenicity and virulence are induced only in plant or in the presence of host components. In this work we investigated the effect of bean pod extract on the transcriptomic profile of the bacterium, when grown at low temperature in minimal medium with or without bean pod extract.
Project description:P. syringae pv. phaseolicola is the causal agent of the halo blight disease of beans (Phaseolus vulgaris L). The disease attacks both foliage and pods of plant host. Many genes involve in pathogenicity and virulence are induced only in plant or in the presence of host components. In this work we investigated the effect of bean pod extract on the transcriptomic profile of the bacterium, when grown at low temperature in minimal medium with or without bean pod extract. Two RNA samples were compared, one prepared from cells grown in minimal medium M9 and the other from cells grown in minimal medium supplemented with bean pod extract.To control de biological variation that might interfere with data interpretation, a minimum of three biological replicates and two technical replicates (swap) were prepared.
Project description:The pod is the main edible part of Phaseolus vulgaris L. (common bean). The commercial use of the pods is mainly affected by their color. Consumers seem to prefer golden pods. However, planters suffer economic losses because of pod color instability. The aim of the present study was to identify the gene responsible for the golden pod trait in the common bean. ‘A18-1’ (a golden bean line) and ‘Renaya’ (a green bean line) were chosen as the experimental materials. Genetic analysis indicated that a single recessive gene, pv-ye, controls the golden pod trait. A candidate region of 4.24-Mb was mapped to chromosome A02 using bulked-segregant analysis coupled to whole genome sequencing. In this region, linkage analysis in an F2 population localized the pv-ye gene to an interval of 182.9-kb between the simple sequence repeat markers SSR77 and SSR93. This region comprised 16 genes in this region, comprising 12 annotated genes from the P. vulgaris database, and 4 functionally unknown genes. Combined with transcriptome sequencing, we identified Phvul.002G006200 as the potential candidate gene for pv-ye. Sequencing of Phvul.002G006200 identified a single nucleotide polymorphism (SNP) in pv-ye. This SNP is located in the coding region and is responsible for substituting a glutamic acid with an glutamine at position 416 of the pv-ye protein (E416Q). A pair of primers covering the SNP was designed and the fragment was sequenced to screen 316 F2 plants with the ‘A18-1’ phenotype, based on the different site. Our findings showed that the among the 316 mapped individuals, the SNP cosegregated with the ‘A18-1’ phenotype. The findings presented here could form the basis to reveal the mechanism of the golden pod trait in the common bean at the molecular level.
Project description:A wide range of environmental stresses lead to an elevated production of reactive oxygen species (ROS) in plant cells thus resulting in oxidative stress. The biological nitrogen fixation in the legume - Rhizobium symbiosis is at high risk of damage from oxidative stress. Common bean (Phaseolus vulgaris) active nodules exposed to the herbicide Paraquat (1,1 '-Dimethyl-4, 4'-bipyridinium dichloride hydrate) that generates ROS accumulation, showed a reduced nitrogenase activity and ureide content. We analyzed the global gene response of stressed nodules using the Bean CombiMatrix Custom Array 90K, that includes probes from some 30,000 expressed sequence tags (EST). A total of 4,280 ESTs were differentially expressed in oxidative stressed bean nodules; of these 2,218 were repressed. These genes were grouped in 44 different biological processes as defined by Gene Onthology. Analysis with the PathExpress bioinformatic tool, adapted for bean, identified five significantly repressed metabolic path
Project description:To dissect the gene regulatory networks operating during Scarlet Runner Bean seed development, we identified the binding sites genome-wide for transcription factor in Scarlet Runner Bean seeds during seed development using ChIP-seq
Project description:Many genes involve in pathogenicity and virulence are induced only in plant or in the presence of host components. Bean leaf extract was obtained from healthy bean leaves. In this work we investigated the effect of bean leaf extract on the transcriptomic profile of the bacterium, when grown at low temperature in minimal medium with or without extract from healthy bean leaves.
Project description:Common bean (Phaseolus vulgaris) and soybean (Glycine max) both belong to the Phaseoleae tribe and share significant coding sequence homology. To evaluate the utility of the soybean GeneChip for transcript profiling of common bean, we hybridized cRNAs purified from nodule, leaf, and root of common bean and soybean in triplicate to the soybean GeneChip. Initial data analysis showed a decreased sensitivity and specificity in common bean cross-species hybridization (CSH) GeneChip data compared to that of soybean. We employed a method that masked putative probes targeting inter-species variable (ISV) regions between common bean and soybean. A masking signal intensity threshold was selected that optimized both sensitivity and specificity. After masking for ISV regions, the number of differentially-expressed genes identified in common bean was increased by about 2.8-fold reflecting increased sensitivity. Quantitative RT-PCR analysis of a total of 20 randomly selected genes and purine-ureides pathway genes demonstrated an increased specificity after masking for ISV regions. We also evaluated masked probe frequency per probe set to gain insight into the sequence divergence pattern between common bean and soybean. The results from this study suggested that transcript profiling in common bean can be done using the soybean GeneChip. However, a significant decrease in sensitivity and specificity can be expected. Problems associated with CSH GeneChip data can be mitigated by masking probes targeting ISV regions. In addition to transcript profiling CSH of the GeneChip in combination with masking probes in the ISV regions can be used for comparative ecological and/or evolutionary genomics studies.
Project description:Soybean plants were subjected to water deficit, heat stress, and combination of water deficit and heat stress along with control condition and pods were analysed for temperature, water potential, transpiration, yield and differential gene expression compared to control.