Project description:Saccharomyces cerevisiae is an excellent microorganism for industrial succinic acid production, but high succinic acid concentration will inhibit the growth of Saccharomyces cerevisiae then reduce the production of succinic acid. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different genetic backgrounds under different succinic acid stress, we hope to find the response mechanism of Saccharomyces cerevisiae to succinic acid.
Project description:The irreversible decarboxylation step, which commits 2-oxo acids to the Ehrlich pathway, was initially attributed to pyruvate decarboxylase. However, the yeast genome was shown to harbour no fewer than 5 genes that show sequence similarity with thiamine-diphosphate dependent decarboxylase genes. Three of these (PDC1, PDC5 and PDC6) encode pyruvate decarboxylases { while ARO10 and THI3 represent alternative candidates for Ehrlich-pathway decarboxylases. Transcriptome analysis and decarboxylase activity measurements on an S. cerevisiae aro10 strain, a double aro10 thi3 deletion strain and a quadruple pdc1,5,6,aro10 mutant strains grown in carbon–limited chemostat with phenylalanine as nitrogen source indicated that: i) PDC5 is strongly upregulated in an aro10 background (Fig. 2) and also encodes a broad-substrate α-keto acid decarboxylase. ii) PDC5 expression depends on the presence of THI3 (Fig. 2), and iii) in contrast to cell extracts from a strain expressing ARO10 only (pdc1,5,6, thi3), cell extract from a strain that only contains THI3 (pdc1,5,6,aro10) did not produce any α-keto acid decarboxylase activity . THI3 has recently been demonstrated to be involved in regulation of thiamine homeostasis in S. cerevisiae, which further suggests that its role in the Ehrlich pathway may be regulatory rather than catalytic. A systematic investigation of the catalytic properties of all five (putative) TPP-dependent decarboxylases (Aro10p, Thi3p, Pdc1p, Pdc5p, Pdc6p) is essential for a final resolution of the substrate specificity of these key enzymes in the Ehrlich pathway. Keywords: Strain comparison
Project description:During fermentation Saccharomyces yeast produces various aroma-active metabolites determining the different characteristics of aroma and taste in fermented beverages. Amino acid utilization by yeast during brewer´s wort fermentation is seen as linked to flavour profile. To better understand the relationship between the biosynthesis of aroma relevant metabolites and the importance of amino acids, DNA microarrays were performed for Saccharomyces cerevisiae strain S81 and Saccharomyces pastorianus var. carlsbergensis strain S23, respectively. Thereby, changes in transcription of genes were measured, which are associated with amino acid assimilation and its derived aroma-active compounds during fermentation.
Project description:Raw expression values (CHP data) for transcriptional profiling of the response of Saccharomyces cerevisiae to challenges with lactic acid at pH 3 and pH 5. Keywords: response to lactic acid
Project description:A six array study using total gDNA recovered from two separate cultures of each of three different strains of Saccharomyces cerevisiae (YB-210 or CRB, Y389 or MUSH, and Y2209 or LEP) and two separate cultures of Saccharomyces cerevisiae DBY8268. Each array measures the hybridization of probes tiled across the Saccharomyces cerevisiae genome.
Project description:Industrial bioethanol production may involve a low pH environment,improving the tolerance of S. cerevisiae to a low pH environment caused by inorganic acids may be of industrial importance to control bacterial contamination, increase ethanol yield and reduce production cost. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different ploidy under low pH stress, we hope to find the tolerance mechanism of Saccharomyces cerevisiae to low pH.
Project description:We report change in the nucleosome occupancy and accessibility upon deletion of ATP-dependent chromatin remodellers (ISW1, ISW2 & CHD1) in Saccharomyces cerevisiae.
Project description:During fermentation Saccharomyces yeast produces various aroma-active metabolites determining the different characteristics of aroma and taste in fermented beverages. Amino acid utilization by yeast during brewer´s wort fermentation is seen as linked to flavour profile. To better understand the relationship between the biosynthesis of aroma relevant metabolites and the importance of amino acids, DNA microarrays were performed for Saccharomyces cerevisiae strain S81 and Saccharomyces pastorianus var. carlsbergensis strain S23, respectively. Thereby, changes in transcription of genes were measured, which are associated with amino acid assimilation and its derived aroma-active compounds during fermentation. 48 samples were used in this experiment