Project description:Cranial neural crest development is governed by positional gene regulatory networks (GRNs). Fine-tuning of the GRN components underly facial shape variation, yet how those in the midface are connected and activated remain poorly understood. Here, we show that concerted inactivation of Tfap2a and Tfap2b in the murine neural crest, even during the late migratory phase, results in a midfacial cleft and skeletal abnormalities. Bulk and single-cell RNA-seq profiling reveal that loss of both Tfap2 members dysregulates numerous midface GRN components involved in midface morphogenesis, patterning, and differentiation. Notably, Alx1/3/4 (Alx) transcript levels are reduced, while ChIP-seq analyses suggest TFAP2 directly and positively regulates Alx gene expression. TFAP2 and ALX co-expression in midfacial neural crest cells of both mouse and zebrafish further implies conservation of this regulatory axis across vertebrates. Consistent with this notion in zebrafish, tfap2a mutants present abnormal alx3 expression patterns, Tfap2a binds alx loci, and tfap2a-alx3 genetic interactions are observed. Together, these data demonstrate TFAP2 paralogs regulate vertebrate midfacial development by activating expression of ALX transcription factors.
Project description:Cranial neural crest development is governed by positional gene regulatory networks (GRNs). Fine-tuning of the GRN components underly facial shape variation, yet how those in the midface are connected and activated remain poorly understood. Here, we show that concerted inactivation of Tfap2a and Tfap2b in the murine neural crest, even during the late migratory phase, results in a midfacial cleft and skeletal abnormalities. Bulk and single-cell RNA-seq profiling reveal that loss of both Tfap2 members dysregulates numerous midface GRN components involved in midface morphogenesis, patterning, and differentiation. Notably, Alx1/3/4 (Alx) transcript levels are reduced, while ChIP-seq analyses suggest TFAP2 directly and positively regulates Alx gene expression. TFAP2 and ALX co-expression in midfacial neural crest cells of both mouse and zebrafish further implies conservation of this regulatory axis across vertebrates. Consistent with this notion in zebrafish, tfap2a mutants present abnormal alx3 expression patterns, Tfap2a binds alx loci, and tfap2a-alx3 genetic interactions are observed. Together, these data demonstrate TFAP2 paralogs regulate vertebrate midfacial development by activating expression of ALX transcription factors.
Project description:Cranial neural crest development is governed by positional gene regulatory networks (GRNs). Fine-tuning of the GRN components underly facial shape variation, yet how those in the midface are connected and activated remain poorly understood. Here, we show that concerted inactivation of Tfap2a and Tfap2b in the murine neural crest, even during the late migratory phase, results in a midfacial cleft and skeletal abnormalities. Bulk and single-cell RNA-seq profiling reveal that loss of both Tfap2 members dysregulates numerous midface GRN components involved in midface morphogenesis, patterning, and differentiation. Notably, Alx1/3/4 (Alx) transcript levels are reduced, while ChIP-seq analyses suggest TFAP2 directly and positively regulates Alx gene expression. TFAP2 and ALX co-expression in midfacial neural crest cells of both mouse and zebrafish further implies conservation of this regulatory axis across vertebrates. Consistent with this notion in zebrafish, tfap2a mutants present abnormal alx3 expression patterns, Tfap2a binds alx loci, and tfap2a-alx3 genetic interactions are observed. Together, these data demonstrate TFAP2 paralogs regulate vertebrate midfacial development by activating expression of ALX transcription factors.
Project description:Cranial neural crest development is governed by positional gene regulatory networks (GRNs). Fine-tuning of the GRN components underlies facial shape variation, yet how those networks in the midface are connected and activated remain poorly understood. Here, we show that concerted inactivation of Tfap2a and Tfap2b in the murine neural crest, even during the late migratory phase, results in a midfacial cleft and skeletal abnormalities. Bulk and single-cell RNA-seq profiling reveal that loss of both TFAP2 family members dysregulates numerous midface GRN components involved in midface morphogenesis, patterning and differentiation. Notably, Alx1, Alx3 and Alx4 (ALX) transcript levels are reduced, whereas ChIP-seq analyses suggest TFAP2 family members directly and positively regulate ALX gene expression. Tfap2a, Tfap2b and ALX co-expression in midfacial neural crest cells of both mouse and zebrafish implies conservation of this regulatory axis across vertebrates. Consistent with this notion, tfap2a zebrafish mutants present with abnormal alx3 expression patterns, Tfap2a binds ALX loci and tfap2a-alx3 genetic interactions are observed. Together, these data demonstrate TFAP2 paralogs regulate vertebrate midfacial development in part by activating expression of ALX transcription factor genes.
Project description:Cranial neural crest development is governed by positional gene regulatory networks (GRNs). Fine-tuning of the GRN components underly facial shape variation, yet how those in the midface are connected and activated remain poorly understood. Here, we show that concerted inactivation of Tfap2a and Tfap2b in the murine neural crest even during the late migratory phase results in a midfacial cleft and skeletal abnormalities. Bulk and single-cell RNA-seq profiling reveal that loss of both Tfap2 members dysregulated numerous midface GRN components involved in midface fusion, patterning, and differentiation. Notably, Alx1/3/4 (Alx) transcript levels are reduced, while ChIP-seq analyses suggest TFAP2 directly and positively regulates Alx gene expression. TFAP2 and ALX co-expression in midfacial neural crest cells of both mouse and zebrafish further implies conservation of this regulatory axis across vertebrates. Consistent with this notion, tfap2a mutant zebrafish present abnormal alx3 expression patterns, and the two genes display a genetic interaction in this species. Together, these data demonstrate a critical role for TFAP2 in regulating vertebrate midfacial development in part through ALX transcription factor gene expression.
Project description:In developing melanocytes and in melanoma cells, multiple paralogs of the Activating-enhancer-binding Protein 2 family of transcription factors (TFAP2) contribute to expression of genes encoding pigmentation regulators, but their interaction with Microphthalmia transcription factor (MITF), a master regulator of these cells, is unclear. Supporting the model that Tfap2 facilitates MITF's ability to activate expression of pigmentation genes, single-cell seq analysis of zebrafish embryos revealed that pigmentation genes are only expressed in the subset of mitfa-expressing cells that also express Tfap2 paralogs. To test this model in SK-MEL-28 melanoma cells we deleted the two TFAP2 paralogs with highest expression, TFAP2A and TFAP2C, creating TFAP2 knockout (TFAP2-KO) cells. We then assessed gene expression, chromatin accessibility, binding of TFAP2A and of MITF, and the chromatin marks H3K27Ac and H3K27Me3 which are characteristic of active enhancers and silenced chromatin, respectively. Integrated analyses of these datasets indicate TFAP2 paralogs directly activate enhancers near genes enriched for roles in pigmentation and proliferation, and directly repress enhancers near genes enriched for roles in cell adhesion. Consistently, compared to WT cells, TFAP2-KO cells proliferate less and adhere to one another more. TFAP2 paralogs and MITF co-operatively activate a subset of enhancers, with the latter necessary for MITF binding and chromatin accessibility. By contrast, TFAP2 paralogs and MITF do not appear to co-operatively inhibit enhancers. These studies reveal a mechanism by which TFAP2 profoundly influences the set of genes activated by MITF, and thereby the phenotype of pigment cells and melanoma cells.