Project description:We tested whether home field advantage at inter- and intra-specific levels alters microbial carbon transformations, using a multi-factorial design with microcosms of freshwater submerged leaf litter from two species (Alder and Hemlock) exposed to 'home' or 'away' communities of microbes isolated from decomposing leaf litter, as well as controls with no microbial community added. For all 'home', 'away' and control conditions for each species we also had high or low oxygen treatments. Samples were taken at day 0, 154, 257 and 354 and extracted with solid phase columns and methanol to provide extracted metabolites.
2024-02-10 | MSV000094055 | MassIVE
Project description:Fungal communities of 26 plant species rhizosphere soil
Project description:The biotrophic fungus Ustilago maydis causes smut disease on maize (Zea mays L.), which is characterized by immense plant tumours. To establish disease and reprogram organ primordia to tumours, U. maydis deploys effector proteins in an organ-specific manner. However, the cellular contribution to leaf tumours remains unknown. We investigated leaf tumour formation on the tissue- and cell type-specific level. Cytology and metabolite analysis were deployed to understand the cellular basis for tumourigenesis. Laser-capture microdissection was performed to gain a cell-type specific transcriptome of U. maydis during tumour formation. In-vivo visualization of plant DNA synthesis identified bundle sheath cells as the origin of hyperplasic tumour cells, while mesophyll cells become hypertrophic tumour cells. Cell type specific transcriptome profiling of U. maydis revealed tailored expression of fungal effector genes. Moreover, U. maydis See1 was identified the first cell type specific fungal effector, being required for induction of cell cycle reactivation in bundle sheath cells. Identification of distinct cellular mechanisms in two different leave cell types, and See1 as an effector for induction of proliferation of bundle-sheath cells, are major steps in understanding U. maydis-induced tumor formation. Moreover, the cell-type specific U. maydis transcriptome data is a valuable resource to the scientific community.