Project description:We applied the tiling arrays to study the Arabidopsis whole-genome transcriptome under drought, cold, high-salinity and ABA treatment conditions and idenfied many stress- or ABA- responsive putative functional RNAs and fully-overlapping sense-antisense transcripts in Arabidopsis genome. Keywords: stress response
Project description:We applied the tiling arrays to study the Arabidopsis whole-genome transcriptome under drought, cold, high-salinity and ABA treatment conditions and idenfied many stress- or ABA- responsive putative functional RNAs and fully-overlapping sense-antisense transcripts in Arabidopsis genome. Keywords: stress response Two-week-old Arabidopsis plants grown on the agar plates were subjected to the stress- or ABA- treatments. The total RNA was prepared from the treated- and untreated- plants, and used for the microarray hybridization. Three replicative hybridization experiments for each strand array were carried out using the independent biological RNA samples.
Project description:Jasmonates (JA) and abscisic acid (ABA) are phytohormones known to play important roles in plant response and adaptation to various abiotic stresses including salinity, drought, wounding, and cold. JAZ (JASMONATE ZIM-domain) proteins have been reported to play negative roles in JA signaling. However, direct evidence is still lacking that JAZ proteins regulate drought resistance. In this study, OsJAZ1 was investigated for its role in drought resistance in rice. Expression of OsJAZ1 was strongly responsive to JA treatment, and it was slightly responsive to ABA, salicylic acid, and abiotic stresses including drought, salinity, and cold. The OsJAZ1-overexpression rice plants were more sensitive to drought stress treatment than the wild-type rice Zhonghua 11 (ZH11) at both the seedling and reproductive stages, while the jaz1 T-DNA insertion mutant plants showed increased drought tolerance compared to the wild-type plants. The OsJAZ1-overexpression plants were hyposensitive to MeJA and ABA, whereas the jaz1 mutant plants were hypersensitive to MeJA and ABA. In addition, there were significant differences in shoot and root length between the OsJAZ1 transgenic and wild-type plants under the MeJA and ABA treatments. A subcellular localization assay indicated that OsJAZ1 was localized in both the nucleus and cytoplasm. Transcriptome profiling analysis by RNA-seq revealed that the expression levels of many genes in the ABA and JA signaling pathways exhibited significant differences between the OsJAZ1-overexpression plants and wild-type ZH11 under drought stress treatment. Quantitative real-time PCR confirmed the expression profiles of some of the differentially expressed genes, including OsNCED4, OsLEA3, RAB21, OsbHLH006, OsbHLH148, OsDREB1A, OsDREB1B, SNAC1, and OsCCD1. These results together suggest that OsJAZ1 plays a role in regulating the drought resistance of rice partially via the ABA and JA pathways.
Project description:Biotic and abiotic stresses limit agricultural yields, and plants are often simultaneously exposed to multiple stresses. Combinations of stresses such as heat and drought or cold and high light intensity, have profound effects on crop performance and yeilds To analyze such responses, we initially compared transcriptome changes in ten Arabidopsis thaliana ecotypes using cold, heat, high light, salt and flagellin treatments as single stress factors or their double combinations.
Project description:The growth and fruit quality of grapevine are widely affected by abnormal climatic conditions such as extreme temperature. But how grapevine responds to cold stress is still largely unknown. Here we found that VaMyb14, a member of R2R3 Myb transcription factor family, was up-regulated dramatically during cold, drought and salinity treatments in Vitis amurensis, a cold and drought-hardiness wild Vitis species. Overexpression VaMyb14 in Arabidopsis increased antioxidant enzyme activity, especially POD activity, than that of the wild type and decreased the MDA content. A series of ABA metabolism and signal transduction genes in transgenic Arabidopsiswere were up-regulated in microarry results, including several nsLTPs, PP2Cs, RD29B, COR78 and other structural genes, suggesting that VaMyb14 not only affect the ABA signaling pathways, but also activates the CBF-COR independent nsLTP genes. Collectively, these results illustrate that Vitis Myb14 could represent a node of convergence regulating grapevine stress responses, including improve defence induced phytoalexin resveratrol against necrotrophic as well as drought and/or cold stress tolerance, highlighting Myb14 as a potential gene resource in future grapevine breeding.
Project description:Biotic and abiotic stresses limit agricultural yields, and plants are often simultaneously exposed to multiple stresses. Combinations of stresses such as heat and drought or cold and high light intensity, have profound effects on crop performance and yeilds To analyze such responses, we initially compared transcriptome changes in ten Arabidopsis thaliana ecotypes using cold, heat, high light, salt and flagellin treatments as single stress factors or their double combinations. Arabidopsis thaliana plants of ecotypes (Col, Ler, C24, Cvi, Kas1, An1, Sha, Kyo2, Eri and Kond) were subjected to the following stress treatments: Salt, Cold, Heat, High Light (HL), Salt+Heat, Salt+HL, Cold+HL, Heat+HL, as well as FLG (Flagellin, flg22 peptide), Cold+FLG, Heat+FLG
Project description:Transgenic Arabidopsis plants with constitutively low inositol (1,4,5) triphosphate exhibit an increased tolerance to water stress by an ABA-independent pathway The phosphoinositide pathway and inositol (1,4,5) trisphopsphate (InsP3) are implicated in plant responses to stress. In order to manipulate the pathway and determine the downstream consequences of altered InsP3-mediated signaling, we generated transgenic Arabidopsis plants expressing the mammalian type I inositol polyphosphate 5-phosphatase, an enzyme that specifically hydrolyzes the soluble inositol phosphates and terminates the signal. Transgenic plants have no morphological differences compared to wild type; however, rapid transient Ca2+ responses to a cold or salt stimulus are reduced by ~ 30%. To further understand the role of InsP3-mediated signaling in plant stress responses we focused on drought stress. Surprisingly, the InsP 5-ptase plants lose less water and exhibited an increased tolerance to drought. Stomatal bioassays showed that transgenic guard cells are less responsive to the inhibition of opening by ABA but show an increased sensitivity to ABA-induced closure. The onset of the drought stress is delayed in the transgenic plants and ABA levels did not increase as much as in the wild type. Transcript profiling has revealed that DREB2A and a subset of DREB2A regulated genes are basally up regulated in the InsP 5-ptase plants. These results indicate that the drought tolerance of the InsP 5-ptase plants is mediated in part via an ABA-independent pathway. The constitutive dampening of the InsP3 signal in this system has uncovered novel regulation and cross talk between signaling pathways. Keywords: drought stress, expression study
Project description:For identification of genes up-regulated in abiotic stress (drought, high salinity, low temperature and ABA) treated rice, total RNA (100 μg) was prepared from root tissues of 14-d-old rice seedlings (Oryza sativa cv Nakdong) grown under normal growth conditions. For the high salinity and ABA treatments, the 14-d-old seedlings were transferred to a nutrient solution containing 400 mM NaCl or 100 μM ABA for 2 h in the greenhouse under continuous light of approximately 1000 μmol m-2 s -1. For drought treatment, 14-d-old seedlings were air-dried for 2 h also under continuous light of approximately 1000 μmol m-2 s -1. For low temperature treatments, 14-d-old seedlings were exposed at 4°C in a cold chamber for 6 h under continuous light of 150 μmol m-2 s -1.
Project description:Thellungiella, an Arabidopsis-related halophyte, is an emerging model species for studies designed to elucidate molecular mechanisms of abiotic stress tolerance. Using a cDNA microarray containing 3628 unique sequences derived from previously reported libraries of stress-induced cDNAs of the Yukon ecotype of Thellungiella, we obtained transcript profiles of its response to drought, cold, high salinity and re-watering after drought. A total of 153 transcripts were found to be significantly differentially regulated under the conditions studied. Only six of these genes responded to all three stresses of drought, cold and salinity. Unlike in Arabidopsis, there were relatively few transcript changes in response to high salinity in this halophyte. Furthermore, drought responsive-transcripts in Thellungiella provided a link between the down-regulation of defense-related transcripts and the increase of endogenous abscisic acid during drought. This antagonistic interaction between drought and biotic stress response may potentially be beneficial for survival under drought stress. Intriguingly, changes of transcript abundance in response to cold implicate the involvement of jasmonic acid in the cold acclimation of Thellungiella. Taken together, our results provide useful starting points for more in depth analysis of Thellungiella’s extreme stress tolerance. Keywords: Abiotic stress response
Project description:Constitutive active form of DREB2A, a transcriptional regulator involving to plant drought and high-salinity stress response, was overexpressed in Arabidopsis, and gene expression pattern was compared between transgenic plants and wild type plants.