Project description:Enterohemorrhagic Escherichia coli (EHEC) are transmitted from cattle to human by means of contaminated food products resulting from fecal contamination. Transcriptome analysis was performed to gain further insight into the metabolic pathways required for persistence and growth of EHEC in the bovine intestine. Understanding the physiology of EHEC in the gut of ruminants is critical to identifying the potential nutritional basis to limiting EHEC shedding. A global transcriptome analysis was performed to gain further insight into the metabolic pathways required for persistence and growth of EHEC in the bovine intestine. DNA microarrays were performed using RNA from EHEC O157:H7 EDL933 incubated in bovine small intestine content (BSIC) compared with cells incubated in M9-minimal media.
Project description:Enterohemorrhagic Escherichia coli (EHEC) are transmitted from cattle to human by means of contaminated food products resulting from fecal contamination. Transcriptome analysis was performed to gain further insight into the metabolic pathways required for persistence and growth of EHEC in the bovine intestine. Understanding the physiology of EHEC in the gut of ruminants is critical to identifying the potential nutritional basis to limiting EHEC shedding. A global transcriptome analysis was performed to gain further insight into the metabolic pathways required for persistence and growth of EHEC in the bovine intestine. DNA microarrays were performed using RNA from EHEC O157:H7 EDL933 incubated in bovine small intestine content (BSIC) compared with cells incubated in M9-minimal media. Four biological replicates collected for bacterial cultures on separate days for each media and labelled following a dye-switch design : For each media two replicates labeled in Cy3 and two replicates in Cy5.
Project description:Bovine Immunodeficiency Virus (BIV) is a member of Retroviruses family which is natural pathogen of cattle, prevalent worldwide. The significance of BIV infection in cattle has not been clearly established and it is still unknown whether BIV induces a specific syndrome or whether it renders animals more susceptible to other infections. To gain insight into host response to BIV infection the pattern of gene expression in bovine macrophage cells (BoMac) was analyzed using BLO Plus microarrays from CAFG, Michigan State University ( GEO GPL9176).
Project description:In this study, samples of 16 dairy cows from a MAP infected farm were used. Serum, milk and fecal samples were collected. Categorizing these cows into two groups based on their MAP infection status different standard methods for detection MAP were applied. Healthy controls showed no positive results in enzyme-linked immunosorbent assay (ELISA) with serum and milk samples (cattletype MAP Ab, Qiagen, Hilden, Germany; In-direct, IDVet, Grabels, France) and after cultivation of fecal samples on commercial Her-rold´s Egg Yolk Agars (HEYM agar, Becton Dickinson, Heidelberg, Germany) for 12 weeks. Cows with positive results were grouped into MAP infected cows. Specifically, for mass spectrometry analysis serum of seven MAP infected cows and seven healthy controls were used. All animals were from the same farm and were kept under the same environmental conditions. For additional mass spectrometry analysis with a further control group sam-ples of 21 dairy cows from an uninfected farm were examined. All cattle from this farm showed negative results in ELISA with serum and milk samples. Additionally, there was never a positive result in regularly tested fecal samples and sock swab samples of this farm. For verification of differential CTSS expression in Western blot analysis five dairy cows from another infected farm were consultedincluded. MAP status of these cows was analyzed by cultivation of fecal samples on HEYM agar for 12 weeks and ELISA with se-rum samples. In detail, two cattle were categorized into healthy controls and three cattle into MAP infected cows. Withdrawal of bovine venous whole blood and experi-mental protocols were approved by the local authority, Government of Upper Bavaria, permit no. ROB-55.2-2532.Vet_03-17-106.
Project description:Transcriptional profiling of blood B cells from bovine leukemia virus-infected cattle comparing IgMhigh B cells with IgMlow B cells. Goal was to estimate the difference of cellular function in both subset. Two-condition experiment, IgMhigh B cells vs. IgMlow B cells from three bovine leukemia virus-infected cattle.