Project description:Maladaptive reward seeking is a hallmark of cocaine use disorder. To develop therapeutic targets, it is critical to understand the neurobiological changes specific to cocaine-seeking without altering the seeking of natural rewards, e.g., sucrose. The prefrontal cortex (PFC) and the nucleus accumbens core (NAcore) are known regions associated with cocaine- and sucrose-seeking ensembles, i.e., a sparse population of co-activated neurons. Within ensembles, transcriptomic alterations in the PFC and NAcore underlie the learning and persistence of cocaine- and sucrose-seeking behavior. However, transcriptomes exclusively driving cocaine seeking independent from sucrose seeking have not yet been defined using a within-subject approach. Using Ai14:cFos-TRAP2 transgenic mice in a dual cocaine and sucrose self-administration model, we fluorescently sorted (FACS) and characterized (RNAseq) the transcriptomes defining cocaine- and sucrose-seeking ensembles. We found reward- and region-specific transcriptomic changes that will help develop clinically relevant genetic approaches to decrease cocaine-seeking behavior without altering non-drug reward-based positive reinforcement.
Project description:Maladaptive reward seeking is a hallmark of cocaine use disorder. To develop therapeutic targets, it is critical to understand the neurobiological changes specific to cocaine-seeking without altering the seeking of natural rewards, e.g., sucrose. The prefrontal cortex (PFC) and the nucleus accumbens core (NAcore) are known regions associated with cocaine- and sucrose-seeking ensembles, i.e., a sparse population of co-activated neurons. Within ensembles, transcriptomic alterations in the PFC and NAcore underlie the learning and persistence of cocaine- and sucrose-seeking behavior. However, transcriptomes exclusively driving cocaine seeking independent from sucrose seeking have not yet been defined using a within-subject approach. Using Ai14:cFos-TRAP2 transgenic mice in a dual cocaine and sucrose self-administration model, we fluorescently sorted (FACS) and characterized (RNAseq) the transcriptomes defining cocaine- and sucrose-seeking ensembles. We found reward- and region-specific transcriptomic changes that will help develop clinically relevant genetic approaches to decrease cocaine-seeking behavior without altering non-drug reward-based positive reinforcement.
Project description:The physical manifestations of memory formation and recall are fundamental questions that remain unresolved. At the cellular level, ensembles of neurons called engrams are activated by learning events and control memory recall. Astrocytes are in close proximity to neurons and engage in a range of activities that support neurotransmission and circuit plasticity. Moreover, astrocytes exhibit experience dependent plasticity; however whether specific ensembles of astrocytes participate in memory recall remains obscure. Here we show that learning events induce c-Fos expression in a subset of hippocampal astrocytes, which subsequently regulates hippocampal circuit function. Intersectional, c-Fos based labeling of these astrocyte ensembles after learning events reveals that they are closely affiliated with engram neurons, while re-activation of these astrocyte ensembles stimulates memory recall. At the molecular level, these astrocyte ensembles exhibit elevated expression of NFIA and its selective deletion from this population suppresses memory recall. Together, our studies identify learning-associated astrocyte ensembles as a new form of plasticity that is sufficient to provoke memory recall, while implicating astrocytes as a reservoir for the storage of memories.
Project description:Nuclear receptors function as ligand-regulated transcription factors whose ability to regulate diverse physiological processes is closely linked with conformational changes induced upon ligand binding. Understanding how conformational populations of nuclear receptors are shifted by various ligands could illuminate strategies for the design of synthetic modulators to regulate specific transcriptional programs. Here, we investigate ligand-induced conformational changes using a reconstructed, ancestral nuclear receptor. By making substitutions at a key position, we engineer receptor variants with altered ligand specificities. We use atomistic molecular dynamics (MD) simulations with enhanced sampling to generate ensembles of wildtype and engineered receptors in combination with multiple ligands, followed by conformational analysis and prediction of ligand activity. We combine cellular and biophysical experiments to allow correlation of MD-based predictions with functional ligand profiles, as well as elucidation of mechanisms underlying altered transcription in receptor variants. We determine that conformational ensembles accurately predict ligand responses based on observed population shifts, even within engineered receptors that were constitutively active or transcriptionally unresponsive in experiments. These studies provide a platform which will allow structural characterization of physiologically-relevant conformational ensembles, as well as provide the ability to design and predict transcriptional responses in novel ligands.
Project description:The vagus nerves are important carriers of sensory information from the viscera to the central nervous system. Emerging evidence suggests that sensory signaling through the right, but not the left, vagus nerve evokes striatal dopamine release and reinforces appetitive behaviors. However, the extent to which differential gene expression within vagal sensory neurons contributes to this asymmetric reward-related signaling remains unknown. Here, we use single-cell RNA sequencing to identify genes that are differentially expressed between the left and right nodose ganglia (NG) to identify candidate genes likely to contribute to vagus-mediated reward signaling. We find that a group of neurons expressing Chrna3 (nicotinic acetylcholine receptor subunit 3) and Cckar (cholecystokinin A receptor) is preferentially expressed in the right NG of both rats and mice. This result suggests that differential expression of gut-innervating nutrient sensors in NG neurons may contribute to asymmetric encoding of interoceptive rewards by the vagus nerves.
Project description:All drugs of abuse induce long-lasting changes in synaptic transmission and neural circuit function that underlie substance use disorders. Another recently appreciated mechanism of neural circuit plasticity is mediated through activity-regulated changes in myelin that can tune circuit function and influence cognitive behavior1. Here, we explored the role of myelin plasticity in dopaminergic circuity and reward learning. We demonstrate that dopaminergic neuronal activity-regulated myelin plasticity is a key modulator of dopaminergic circuit function and opioid reward. Oligodendroglial lineage cells respond to dopaminergic neuronal activity evoked by either optogenetic stimulation of dopaminergic neurons, optogenetic inhibition of GABAergic neurons, or administration of morphine or cocaine. These oligodendroglial changes are evident selectively within the ventral tegmental area (VTA), but not along the axonal projections in the medial forebrain bundle nor within the target nucleus accumbens (NAc). Genetic blockade of oligodendrogenesis dampens dopamine release dynamics in nucleus accumbens and impairs behavioral conditioning to morphine. Taken together, these findings underscore a critical role for oligodendrogenesis in reward learning and identify dopaminergic neuronal activity-regulated myelin plasticity as an important circuit modification that is required for opioid reward.
Project description:Whilst reward pathologies e.g., anhedonia and apathy, are major and common in stress-related neuropsychiatric disorders, their neurobiological bases and therefore treatment are poorly understood. Functional imaging studies in humans with reward pathology indicate that attenuated BOLD activity in nucleus accumbens (NAc) occurs during reward anticipation/expectancy but not reinforcement; potentially, this is dopamine (DA) related. In mice, chronic social stress (CSS) leads to reduced reward learning and effortful motivation and, here, DA-sensor fibre photometry was used to investigate whether these behavioural deficits co-occur with altered NAc DA activity during reward anticipation and/or reinforcement. In CSS mice relative to controls: (1) Reduced discriminative learning of the sequence, tone-on + appetitive behaviour = tone-on + sucrose reinforcement, co-occurred with attenuated NAc DA activity throughout tone-on and sucrose reinforcement. (2) Reduced effortful motivation during the sequence, operant behaviour = tone-on + sucrose delivery + tone-off / appetitive behaviour = sucrose reinforcement, co-occurred with attenuated NAc DA activity at tone-on and typical activity at sucrose reinforcement. (3) Reduced effortful motivation during the sequence, operant behaviour = appetitive behaviour + sociosexual reinforcement co-occurred with typical NAc DA activity at female reinforcement. Therefore, in CSS mice attenuated NAc DA activity is specific to reward anticipation and as such potentially causal to deficits in learning and motivation. CSS did not impact on the transcriptome of ventral tegmentum DA neurons, suggesting that its stimulus-specific effects on NAc DA activity originate elsewhere in the neural circuitry of reward processing.