Project description:Our goal is to identify Salycilic Acid responsive genes dependent on PLD activation. - The experiment is done on Arabidopsis suspension cells, ecotype Columbia : Research of phospholipase D (PLD) activity implication in the response to SA. The use of primary alcohol, like N-butanol, makes possible to derive PLD activity towards the production of phosphatidylalcohol with the detriment of phosphatidic acid, the product of the PLD. Thus, in the presence of n-butanol, the response of the genes to SA dependent on phosphatidic acid will see their response disturbed. On the contrary, in the presence of tertiary butanol, the response of the genes should not be disturbed, tertiary alcohols not acting on the PLD. Keywords: treated vs untreated comparison
Project description:Arabidopsis thaliana is a well-established model system for the analysis of the basic physiological and metabolic pathways of plants. The presented model is a new semi-quantitative mathematical model of the metabolism of Arabidopsis thaliana. The Petri net formalism was used to express the complex reaction system in a mathematically unique manner. To verify the model for correctness and consistency concepts of network decomposition and network reduction such as transition invariants, common transition pairs, and invariant transition pairs were applied. Based on recent knowledge from literature, including the Calvin cycle, glycolysis and citric acid cycle, glyoxylate cycle, urea cycle, sucrose synthesis, and the starch metabolism, the core metabolism of Arabidopsis thaliana was formulated. Each reaction (transition) is experimentally proven. The complete Petri net model consists of 134 metabolites, represented by places, and 243 reactions, represented by transitions. Places and transitions are connected via 572 edges.
Project description:Transcriptional profiling after inhibition of cellulose synthesis by thaxtomin A and isoxaben in Arabidopsis thaliana suspension cells Perturbations in the cellulose content of the plant cell wall lead to global modifications in cellular homeostasis, as seen in cellulose synthase mutants or after inhibiting cellulose synthesis. In particular, application of inhibitors of cellulose synthesis such as thaxtomin A (TA) and isoxaben (IXB) initiates a programmed cell death (PCD) in Arabidopsis thaliana suspension cells that is dependent on de novo gene transcription. To further understand how TA and IXB activate PCD, a whole genome microarray analysis was performed on mRNA isolated from Arabidopsis suspension cells exposed to TA and IXB. More than 75% of the genes upregulated by TA were also upregulated by IXB, including genes encoding cell wall-related and calcium-binding proteins, defence/stress-related transcription factors, signalling components and cell death-related proteins. Comparisons with published transcriptional analyses revealed an important subset of genes generally induced in response to various biotic and abiotic stress.
Project description:To identify genes of the guard cell transcriptome of Arabidopsis thaliana enriched guard cell samples were compared with total leaf tissue. Genes of the abscisic acid and humidity response of Arabidopsis thaliana guard cells were identified by treatment with ABA-Spray and low humidity.
Project description:Transcriptional profiling of Arabidopsis thaliana seedlings treated with auxin (indole-3-acetic acid), highlighting to the physiological function of auxin by observing early response of gene expressions in Arabidopsis seedlings.
Project description:To identify genes of the guard cell transkriptome of Arabidopsis thaliana enriched guard cell samples were compared with total leaf tissue. Genes of the abscisic acid and humidity response of Arabidopsis thaliana guard cells were identified by treatment with ABA-Spray and low humidity. Ost1-2 and slac1-3 mutants were compared to their wildtype.
Project description:Transcriptomic analysis of gene expression during the differentiation of cell suspension cultures into tracheary elements using the biological system published by Pesquet et al., Current Biology (2010): tracheary element differentiation was triggered by externally supplying hormone-free habituated cell suspension cultures of Arabidopsis thaliana Col-0 with auxin, cytokinin and epibrassinolides; RNA samples extracted from 3 independent time-courses every 12h from 0h to 4 days were analyzed using ATH1 Arabidopsis Affymetrix micro-array