Project description:This SuperSeries is composed of the following subset Series: GSE9660: Profiling the transcriptome of Thalassiosira pseudonana under environmentally relevant growth conditions GSE9661: Profiling the transcriptome of Thalassiosira pseudonana under silicon replete and deplete growth Refer to individual Series
Project description:Experimental evidence suggests that the novel conserved DNA-binding protein (BIG1) identified in Thalassiosira pseudonana and other centric diatoms increases resilience under harsh environmental settings, leading to a faster growth response upon return to more favorable growth conditions. To assess the effects of a BIG1 overexpression cell line compared to wild -type, we undertook transcriptome analysis via microarrays.
Project description:Divergent functions of two clades of flavodoxin in diatoms mitigate oxidative stress and iron limitation Thalassiosira pseudonana and 4 open-ocean diatoms were subjected to iron limitation or short-term oxidative stress (hydrogen peroxide). mRNA profiles of T. pseudonana (CCMP1335), Thalassiosira oceanica (CCMP1005), Amphora coffeaeformis (CCMP1405), Chaetoceros sp. (CCMP199), and Cylindrotheca closterium (CCMP340).
Project description:Transcriptomic profiling of the diatom Thalassiosira pseudonana at normal and elevated CO2 levels and at normal and elevated light levels. Common reference total RNA (Agilent Quick-Amp Cy3-labeled) was used in all arrays as an internal standard.
Project description:To characterize the transcript level component of metabolic regulation, genome-wide transcript level changes were documented in the model diatom Thalassiosira pseudonana over a time-course of silicon starvation. Growth, cell cycle progression, chloroplast replication, fatty acid composition, pigmentation, and photosynthetic parameters were characterized alongside lipid accumulation. Extensive coordination of large suites of genes was observed, highlighting the existence of clusters of co-regulated genes as a key feature of global gene regulation in T. pseudonana. The identity of key enzymes for carbon metabolic pathway inputs (photosynthesis) and outputs (growth and storage) reveals these clusters are organized to synchronize these processes.
Project description:We applied an iTRAQ-based quantitative proteomic approach to compare the protein expression profiles of Thalassiosira pseudonana grown in nutrient-replete, and N-, P- and Si-deficient conditions.