Project description:A patient-derived epithelium-only colon rectal organoid, also referred to as a colonoid, was generated from an adenoma (associated with a resection surgery of an invasive moderately differentiated colorectal adenocarcinoma) as part of the development of an on-going organoid biobank at the Michigan Medicine Translational Tissue Modeling Laboratory (TTML, www.UmichTTML.org). The genomic variant signature of this adenoma colonoid was characterized using whole exome sequencing in order to access genomic concordance between the source patient tissue (adenoma and histologically normal tissue 10 cm from lesion) and the in vitro culture, as well as to access genomic stability of the culture over time at 2 and 6.5 months in culture.
Project description:Intrahepatic cholangiocarcinoma (iCCA) is a fatal bile duct cancer with dismal prognosis and limited therapeutic options. By performing RNA- and exome sequencing analyses we have discovered a novel fusion event, FGFR2-PPHLN1 (16%), and damaging mutations in the ARAF oncogene (11%). Methods: mRNA and gDNA were exctracted from fresh frozen tumor tissues and corresponding normal tissue (n=8 pairs) from patients with iCCA who underwent surgical resection. RNA-seq was performed using Illumina HiSeq 2500 System with 100 nucleotide single-end reads. One sample and its paired non-tumoral tissue were eliminated from the subsequent analysis because of bad RNa quality. The same 8 paired tumors were also analyzed by whole-exome seq. Submitter confirms there are no patient privacy concerns with these data. This dataset is part of the TransQST collection.
Project description:Anaplastic thyroid carcinomas (ATC) are rare, but represent the most lethal malignancy of the thyroid. Selective molecular markers and drivers distinguishing ATC from other thyroid carcinomas of follicular origin remain largely unknown, limiting advances in diagnosis and treatment. In a retrospective study, we analyzed gene expression in 36 ATC, 18 poorly-differentiated, 132 papillary and 55 follicular thyroid carcinoma, as well as 124 paired and un-paired normal thyroid tissues in three independent cohorts by RNA-sequencing and immunohistochemistry. RNA-sequencing data in the test cohort suggested selective ATC protein biomarkers. Evaluation of these revealed that ATCs are characterized by the de novo expression of various testis antigens, including melanoma-associated antigen A3 (MAGEA3), but most importantly the oncofetal IGF2 mRNA binding protein 1 (IGF2BP1). Shallow whole genome-sequencing essentially excluded, that IGF2BP1 upregulation results from gene copy number alterations. Immunohistochemical analyses in all three tumor cohorts confirmed selective de novo expression of IGF2BP1 protein in ATC. In sum, 75 % (27/36) of all tested ATC and 0.5 % (1/204) of poorly and well-differentiated thyroid carcinoma tissue samples were positive for IGF2BP1 protein. This indicates that IGF2BP1 protein expression identifies ATC with a diagnostic odds ratio of 612 (95 % CI: 74.6 to 5021). In addition, we found that MAGEA3 is exclusively, although less consistently upregulated in ATC, presenting with an odds ratio of 411 (95 % CI: 23.8 to 7098.7). Importantly, we provide confirmatory evidence that IGF2BP1 and MAGEA3 expression distinguishes ATC from partially differentiated thyroid carcinomas (PDTCs). IGF2BP1 furthermore identified ATC foci within low-grade follicular thyroid carcinoma. In conclusion, IGF2BP1 represents the most promising single-gene marker available for ATC, followed by MAGEA3, improving on current techniques. Robust markers are essential to help distinguish this high-grade malignancy from other thyroid carcinomas, to guide surgical decision making, therapy and post-resection/therapy monitoring strategies.
Project description:Anaplastic thyroid carcinomas (ATC) are rare, but represent the most lethal malignancy of the thyroid. Selective molecular markers and drivers distinguishing ATC from other thyroid carcinomas of follicular origin remain largely unknown, limiting advances in diagnosis and treatment. In a retrospective study, we analyzed gene expression in 36 ATC, 18 poorly-differentiated, 132 papillary and 55 follicular thyroid carcinoma, as well as 124 paired and un-paired normal thyroid tissues in three independent cohorts by RNA-sequencing and immunohistochemistry. RNA-sequencing data in the test cohort suggested selective ATC protein biomarkers. Evaluation of these revealed that ATCs are characterized by the de novo expression of various testis antigens, including melanoma-associated antigen A3 (MAGEA3), but most importantly the oncofetal IGF2 mRNA binding protein 1 (IGF2BP1). Shallow whole genome-sequencing essentially excluded, that IGF2BP1 upregulation results from gene copy number alterations. Immunohistochemical analyses in all three tumor cohorts confirmed selective de novo expression of IGF2BP1 protein in ATC. In sum, 75 % (27/36) of all tested ATC and 0.5 % (1/204) of poorly and well-differentiated thyroid carcinoma tissue samples were positive for IGF2BP1 protein. This indicates that IGF2BP1 protein expression identifies ATC with a diagnostic odds ratio of 612 (95 % CI: 74.6 to 5021). In addition, we found that MAGEA3 is exclusively, although less consistently upregulated in ATC, presenting with an odds ratio of 411 (95 % CI: 23.8 to 7098.7). Importantly, we provide confirmatory evidence that IGF2BP1 and MAGEA3 expression distinguishes ATC from partially differentiated thyroid carcinomas (PDTCs). IGF2BP1 furthermore identified ATC foci within low-grade follicular thyroid carcinoma. In conclusion, IGF2BP1 represents the most promising single-gene marker available for ATC, followed by MAGEA3, improving on current techniques. Robust markers are essential to help distinguish this high-grade malignancy from other thyroid carcinomas, to guide surgical decision making, therapy and post-resection/therapy monitoring strategies.
2020-07-07 | GSE126698 | GEO
Project description:Whole-Exome Sequencing for clinical thyroid cancer patients description:The mechanism of dedifferentiation of differentiated thyroid carcinoma
Project description:To comprehensively characterize microRNAs (miRNA) expression and their target genes in thyroid cancer, we performed next-generation sequencing expression analysis of this disease. Recent studies have found that only the most abundant microRNAs mediate significant target suppression. We sequenced small RNA from 8 papillary thyroid carcinomas (PTC) with paired samples of normal thyroid tissue. We found that only a small set of abundant miRNAs are differentially expressed after pair-wise comparison (12 upregulated and 8 downregulated) reaching the minimum threshold amount to repress target mRNAs. We integrated computational prediction of potential targets and mRNA sequencing from the paired normal and tumor thyroid tissues from the same eight patients with PTC. The integrated analyses identified a master microRNA regulatory network in PTC that is involved in essential biological processes such as thyroid differentiation. As both mature products of miR-146b (miR-146b-5p and -3p) were among the most abundant upregulated in tumors, we unveil their target genes and found that miR-146b-3p specifically binds to the 3`UTR of PAX8 and NIS, leading to an impaired translation of the proteins and subsequently decreasing the iodide uptake of the cells. Furthermore, we show that mir-146b and PAX8 regulate each other, describing a novel regulatory circuit that determines the differentiated phenotype of PTC. In conclusion, our integrative genomic analysis uncovers the target genes of two of the most upregulated miRNAs and highlights the importance of a miR-146b3p-PAX8-NIS regulatory circuit that determines thyroid differentiation in thyroid cancer. Samples from Papillary Thyroid Carcinoma tumors (n=8) and contralateral normal thyroid tissue from the same patient (n=8) were collected at the Biobank of the Hospital Universitario La Paz (Madrid, Spain). The clinical characteristics of patients are summarized in Table S1. Surgically removed tissues were quickly frozen in liquid nitrogen until analysis. The samples were snap frozen on dry ice and stored at -80°C.
Project description:Radioiodine refractory differentiated thyroid cancer (RR-DTC) is the main factor affecting the overall survival rate of thyroid cancer clinically. In order to investigate its underlying molecular mechanism of pathogenesis with the hope to explore novel therapeutic targets for clinical treatment, we performed a comparative proteomic analysis in tumor tissue of patients with RR-DTC and papillary thyroid cancer.
Project description:Agilent whole exome hybridisation capture was performed on genomic DNA derived from Chondrosarcoma cancer and matched normal DNA from the same patients. Next Generation sequencing performed on the resulting exome libraries and mapped to build 37 of the human reference genome to facilitate the identification of novel cancer genes. Now we aim to re find and validate the findings of those exome libraries using bespoke pulldown methods and sequencing the products.
Project description:Single Gland Whole-exome sequencing: building on our prior description of multi-region WES of colorectal tumors and targeted single gland sequencing (E-MTAB-2247), we performed WES of multiple single glands from different sides (right: A and left: B) of two tumors in this study (tumor O and U) on the illumina platform using the Agilent SureSelect 2.0 or illumina Nextera Rapid Capture Exome kit (SureSelect or NRCE, as indicated in the naming of fastq files). Colorectal Cancer Xenograft Whole-exome sequencing: The HCT116 and LoVo Mismatch-Repair-deficient colorectal adenocarcinoma cell lines were obtained from the ATCC and cultured under standard conditions. For both cell lines, a single âfoundingâ cell was cloned and expanded in vitro to ~6M cells. Two aliquots of ~1M cells were subcutaneously injected into opposite flanks (right and left) of a nude mouse and tumors allowed to reach a size of ~1B cells (1cm3) before the animal was sacrificed. Tumor tissue was collected separately from the right and left lesions and DNA was extracted for WES using the illumina TruSeq Exome kit or Nextera Rapid Capture Exome expanded Kits (Truseq or NRCEe), as was DNA from the first passage population (a polyclonal tissue culture for HCT116 and a polyclonal xenograft sample for LoVo), which were employed as a control to study mutation accumulation in culture and post xenotransplantation.