Project description:Transcript abundance in Escherichia coli O157:H7 was determined in the presence or absence of pulsed expression of the small RNA, AsxR.
Project description:Deletion of yedL was found to signifcantly decrease type three secretion in EHEC O157:H7. Transcriptional profiles of Escherichia coli O157: H7 and the isogenic yedL mutant were generated and compared.
Project description:Deletion of yhaO was found to signifcantly decrease type three secretion in EHEC O157:H7. Transcriptional profiles of Escherichia coli O157: H7 and the isogenic yhaO mutant were generated and compared.
Project description:Integrating laterally acquired virulence genes into the backbone regulatory network is important for the pathogenesis of Escherichia coli O157:H7, which has captured many virulence genes through horizontal transfer during evolution. GadE is an essential transcriptional activator of glutamate decarboxylase (GAD) system, the most efficient acid resistance mechanism in E. coli. The full contribution of GadE to the acid resistance and virulence of pathogenic E. coli O157:H7 remains largely unknown. We inactivated gadE in E. coli O157:H7 Sakai and compared global transcription profiles with that of wild type in exponential and stationary phases of growth using microarrays containing 6088 ORFs from three E. coli genomes. gadE inactivation significantly altered the expression of 60 genes independent of growth phase and 122 genes in a growth phase-dependent manner. Inactivation of gadE markedly down-regulated the expression of gadA, gadB, gadC and many acid fitness island genes in a growth phase-dependent manner. Nineteen genes encoded on the locus of enterocyte effacement (LEE), including ler, showed a significant increase in expression upon gadE inactivation. Altogether, our data indicate that GadE is critical for acid resistance of E. coli O157:H7 and plays an important role in virulence by down-regulating expression of LEE.
Project description:Transcript abundance in Escherichia coli O157:H7 was determined in the presence or absence of pulsed expression of the small RNA, AsxR. AsxR was cloned under the control the arabinose inducible promoter Para. Escherichia coli O157:H7 str. TUV93-0 with pAsxR or empty vector was cultured in MEM-HEPES media to an OD600 of 0.8 and 0.2% arabinose added. 10min after addition of arabinose 10ml of cells were harvested and and pellets resuspended in 1ml of Trizol and total RNA isolated. RNAs were labelled using the SuperScript Plus indirect cDNA labelling System. Triplicate control RNAs were pooled and hybridised to seperate AsxR test RNAs on three microarays. Arrays were hybridised using the Maui hybridisation platform and Scann using and Axon Autoloader Scanner. GenePix software was used to analyse images and GPR files were analysed using Genespring 7.3.1.
Project description:Pathogenic biofilms have been associated with persistent infections due to their high resistance to antimicrobial agents. To identify non-toxic biofilm inhibitors for enterohemorrhagic Escherichia coli O157:H7, indole-3-acetaldehyde was used and reduced E. coli O157:H7 biofilm formation. Global transcriptome analyses revealed that indole-3-acetaldehyde most repressed two curli operons, csgBAC and csgDEFG, and induced tryptophanase (tnaAB) in E. coli O157:H7 biofilm cells. Electron microscopy showed that indole-3-acetaldehyde reduced curli production in E. coli O157:H7. Together, this study shows that Actinomycetales are an important resource of biofilm inhibitors as well as antibiotics.
Project description:RpoS is a conserved stress regulator that plays a critical role in survival under stress conditions in Escherichia coli and other γ-proteobacteria. RpoS is also involved in virulence of many pathogens including Salmonella and Vibrio species. Though well characterized in non-pathogenic E. coli K12 strains, the effect of RpoS on transcriptome expression has not been examined in pathogenic isolates. E. coli O157:H7 is a serious human enteropathogen, possessing a genome 20% larger than that of E. coli K12, and many of the additional genes are required for virulence. The genomic difference may result in substantial changes in RpoS-regulated gene expression. To test this, we compared the transcriptional profile of wild type and rpoS mutants of the E. coli O157:H7 EDL933 type strain. The rpoS mutation had a pronounced effect on gene expression in stationary phase, and more than 1,000 genes were differentially expressed (two-fold, p<0.05). By contrast, we found 11 genes expressed differently in exponential phase. Western blot analysis revealed that, as expected, RpoS level was low in exponential phase and substantially increased in stationary phase. The defect in rpoS resulted in impaired expression of genes responsible for stress response (e.g., gadA, katE and osmY), arginine degradation (astCADBE), putrescine degradation (puuABCD), fatty acid oxidation (fadBA and fadE), and virulence (ler, espI and cesF). For EDL933-specific genes on O-islands, we found 50 genes expressed higher in wild type EDL933 and 49 genes expressed higher in the rpoS mutants. The protein levels of Tir and EspA, two LEE-encoded virulence factors, were elevated in the rpoS mutants under LEE induction conditions. Our results show that RpoS has a profound effect on global gene expression in the pathogenic strain O157:H7 EDL933, and the identified RpoS regulon, including many EDL933-specific genes, differs substantially from that of laboratory K12 strains. In this study, we characterized the RpoS regulon of E. coli O157:H7 strain EDL933 using microarray analysis.