Project description:Purpose: We investigated root foraging strategies for K of tea plants using a multi-layer split-root system by RNA-seq. Methods: One-year old tea cuttings were cultivated with the roots evenly planted on the two sides of the split root hydroponic box with a root canal. Three treatments were included to simulate the heterogeneous and homogeneous K environments. After 5d treatment, the roots on the two sides of the split root hydroponic box were collected separately and the RNA sequencing were analyzed by the Illumina Hiseq (2500, Illumina, San Diego, CA). Results: RNA-seq data had a linear relationship with qRT–PCR (r2=0.76), which confirmed the reliability of the RNA-seq data. Conclusions: Our study screened the key genes of tea root system to adapt to potassium heterogeneity.
Project description:We used a transcriptome sequencing approach to analyze different expression levels of three barley varieties under both infected and uninfected conditions
Project description:To identify the putative genes involved in theacrine biosynthesis in tea plant, we carried out comparative transcriptome analysis of Kucha (K6 and K11) and conventional varieties (YH 9 and QX 1).
Project description:To aid the annotation of the genome of cultivated (ZSZ1) and wild (QYZM) ramie and characterize the expression profiling, the root, stem and leaves from these two varieties were performed for transcriptome sequencing. Our results generated 20,693 and 19,498 predicted genes from QYZM and ZSZ1 genome. of them, 17,983 QYZM genes and 17,998 ZSZ1 expressed in at least one of these three examined tissues.
Project description:A Microarray experiment was carried out in order to establish the genetic processes and control mechanism involved during storage root formation in Sweetpotato. A Sweetpotato cDNA chip was created from five varieties covering all the growth stages between them. mRNA from primordial root, fibrous root, pencil root and thick storage root was extracted from four varieties of Sweetpotato. The expression profiles were compared between the root growth stages. Keywords: Transcription profiling One condition experiment with time as a single parameter. Four different varieties of Sweetpotato (SPK004, Beauregard, Tanzania and Feng Shou Bai) with four growth stages (i.e. 3 weeks, 6 weeks, 10 weeks and 16 weeks) each were used for the comparison. Two pairs of biological replicates and one dye swap for each time point and variety were taken.
Project description:Root-synthesized secondary metabolites are critical quality-conferring compounds of foods, plant-derived medicines, and beverages. However, information at a single-cell level on root-specific secondary metabolism remains largely unexplored. L-theanine, an important quality component of tea, is primarily synthesized in roots, from which it is then transported to new tea shoots. In this study, we present a single-cell RNA sequencing (scRNA-seq)-derived map for the tea plant root, which enabled cell-type-specific analysis of glutamate and ethylamine (two precursors of theanine biosynthesis) metabolism, and theanine biosynthesis, storage, and transport. Our findings support a model in which the theanine biosynthesis pathway occurs via multicellular compartmentation and does not require high co-expression levels of transcription factors and their target genes within the same cell cluster. This study provides novel insights into theanine metabolism and regulation, at the single-cell level, and offers an example for studying root-specific secondary metabolism in other plant systems.