Project description:Kharchia local is an Indian tall landrace wheat cultivar. It is native to sodic-saline soils of Kharchia tehsil of the Pali district of Rajasthan, and is a line developed from selections from farmer's fields. It is the most salt tolerant wheat genotype found in India. No systematic study has been carried out in this direction so far. The gaps in understanding of the mechanism underlying salt tolerance limit our ability to improve the salt tolerance in other crop plants. Transcriptome analysis of Kharchia Local under salt stress will provide the insight into the genes involved in salinity tolerance.
Project description:Amorphous calcium carbonate (ACC) is a non-crystalline form of calcium carbonate, which is composed of aggregated nano-size primary particles. Here, we wanted to evaluate how ACC affects gene expression in a human lung cancer cell line (A549).
Project description:Alkalinity stress is considered to be one of the major stressors for fish in saline-alkali water. Thus, it is of great significance from both aquaculture and physiological viewpoint to understand the molecular genetic response of aquatic organisms to alkalinity stress. The objective of this study is to determine genome-wide gene expression profiles to better understand the physiology response of medaka (Oryzias latipes) to high carbonate alkalinity stress. In lab-based cultures, adult fish were exposed to freshwater and high carbonate alkalinity water .We designed a microarray containing 26429 oligonucleotides and describe our experimental results for measuring gene expression changes in the gill of carbonate alkalinity stress exposed fish. The fish were exposed to freshwater (FW) and high carbonate alkalinity water (AW) for 96h, each with three replicates.
Project description:Relentless mining operations have destroyed our environment significantly. Soil inhabiting microbes play a significant role in ecological restoration of these areas. Microbial weathering processes like chemical dissolution of rocks significantly promotes the soil properties and enhances the rock to soil ratio respectively. Earlier studies have reported that bacteria exhibit efficient rock-dissolution abilities by releasing organic acids and other chemical elements from the silicate rocks. However, rock-dissolving mechanisms of the bacterium remain to be unclear till date. Thus, we have performed rock-dissolution experiments followed by genome and transcriptome sequencing of novel Pseudomonas sp.NLX-4 strain to explore the efficiency of microbe-mediated habitat restoration and its molecular mechanisms underlying this biological process. Results obtained from initial rock dissolution experiments revealed that Pseudomonas sp. NLX-4 strain efficiently accelerates the dissolution of silicate rocks by secreting amino acids, exopolysaccharides, and organic acids with elevated concentrations of potassium, silicon and aluminium elements. The rock dissolution experiments of NLX-4 strain exhibited an initial increase in particle diameter variation values between 0-15 days and decline after 15 days-time respectively. The 6,771,445-base pair NLX-4 genome exhibited 63.21 GC percentage respectively with a total of 6041 protein coding genes. Genome wide annotations of NLX-4 strain exhibits 5045-COG, 3996-GO, 5342-InterPro, 4386-KEGG proteins respectively Transcriptome analysis of NLX-4 cultured with/without silicate rocks resulted in 539 (288-up and 251-down) differentially expressed genes (DEGs). Fifteen DEGs encoding for siderophore transport, EPS and amino acids synthesis, organic acids metabolism, and bacterial resistance to adverse environmental conditions were highly up-regulated by cultured with silicate rocks. This study has not only provided a new strategy for the ecological restoration of rock mining areas, but also enriched the applicable bacterial and genetic resources.
Project description:Alkalinity stress is considered to be one of the major stressors for fish in saline-alkali water. Thus, it is of great significance from both aquaculture and physiological viewpoint to understand the molecular genetic response of aquatic organisms to alkalinity stress. The objective of this study is to determine genome-wide gene expression profiles to better understand the physiology response of medaka (Oryzias latipes) to high carbonate alkalinity stress. In lab-based cultures, adult fish were exposed to freshwater and high carbonate alkalinity water .We designed a microarray containing 26429 oligonucleotides and describe our experimental results for measuring gene expression changes in the gill of carbonate alkalinity stress exposed fish.