Project description:The anaerobic digestion microbiomes has been puzzling us since the dawn of molecular methods for mixed microbial community analysis. Monitoring of the anaerobic digestion microbiome can either take place via a holistic evaluation of the microbial community through fingerprinting or by targeted monitoring of selected taxa. Here, we compared four different microbial community fingerprinting methods, i.e., amplicon sequencing, metaproteomics, metabolomics and phenotypics, in their ability to reflect the full-scale anaerobic digestion microbiome. The phenotypic fingerprinting reflects a, for anaerobic digestion, novel, single cell-based approach of direct microbial community fingerprinting. Three different digester types, i.e., sludge digesters, digesters treating agro-industrial waste and dry anaerobic digesters reflected different operational parameters. The α-diversity analysis yielded inconsistent results, especially for richness, across the different methods. In contrast, β-diversity analysis resulted in comparable profiles, even when translated into phyla or functions, with clear separation of the three digester types. In-depth analysis of each method's features i.e., operational taxonomic units, metaproteins, metabolites, and phenotypic traits, yielded certain similar features yet, also some clear differences between the different methods, which was related to the complexity of the anaerobic digestion process. In conclusion, phenotypic fingerprinting is a reliable, fast method for holistic monitoring of the anaerobic digestion microbiome, and the complementary identification of key features through other methods could give rise to a direct interpretation of anaerobic digestion process performance.
Project description:<p>The impact of ammonia on anaerobic digestion performance and microbial dynamics has been extensively studied, but the concurrent effect of anions brought by ammonium salt should not be neglected. This paper studied this effect using metabolomics and a time-course statistical framework. Metabolomics provides novel perspectives to study microbial processes and facilitates a more profound understanding at the metabolic level. The advanced statistical framework enables deciphering the complexity of large metabolomics data sets. More specifically, a series of lab-scale batch reactors were set up with different ammonia sources added. Samples of 9 time points over the degradation were analyzed with liquid chromatography-mass spectrometry. A filtering procedure was applied to select the promising metabolomic peaks from 1262 peaks, followed by modeling their intensities across time. The metabolomic peaks with similar time profiles were clustered, evidencing the correlation of different biological processes. Differential analysis was performed to seek the differences in metabolite dynamics caused by different anions. Finally, tandem mass spectrometry and metabolite annotation provided further information on the molecular structure and possible metabolic pathways. For example, the consumption of 5-aminovaleric acid, a short-chain fatty acid obtained from l-lysine degradation, was slowed down by phosphates. Overall, by investigating the effect of anions on anaerobic digestion, our study demonstrated the effectiveness of metabolomics in providing detailed information in a set of samples from different experimental conditions. With the statistical framework, the approach enables capturing subtle differences in metabolite dynamics between samples while accounting for the differences caused by time variations.</p>
Project description:Background: Biological conversion of the surplus of renewable electricity to CH4 could support energy storage and strengthen the power grid. Biological methanation (BM) is closely linked to the activity of biogas-producing bacterial community and methanogenic Archaea in particular. During reactor operations, the microbiome is often subject to various changes whereby the microorganisms are challenged to adapt to the new conditions. In this study, a hydrogenotrophic-adapted microbial community in a laboratory-scale BM fermenter was monitored for its pH, gas production, conversion yields and composition. To investigate the robustness of BM regarding power oscillations, the biogas microbiome was exposed to five H2 starvations patterns for several hours.
2023-03-11 | PXD034618 | Pride
Project description:Culture Adaptation During Anaerobic Digestion
| PRJNA706717 | ENA
Project description:Metagenomic analysis during anaerobic digestion