Project description:We found that mainstream cigarette smoking (4 cigarettes/day, 5 days/week for 2 weeks using Kentucky Research Cigarettes 3R4F) resulted in >20% decrease in the percentage of normal Paneth cell population in Atg16l1 T300A mice but showed minimal effect in wildtype littermate control mice, indicating that Atg16l1 T300A polymorphism confers sensitivity to cigarette smoking-induced Paneth cell damage. We performed 16S rRNA sequencing to identify potential microbiota changes associated with Paneth cell defect in Atg16l1 T300A mice exposed to cigarette smoking. Female mice were used at 4-5 weeks of age. Cigarette smoking was performed using smoking chamber with the dosage and schedule as described above. The fecal samples from the mice were collected for 16S rRNA sequencing analysis after completing 6 weeks of smoking.
Project description:This study aimed to analyze changes in gut microbiota composition in mice after transplantation of fecal microbiota (FMT, N = 6) from the feces of NSCLC patients by analyzing fecal content using 16S rRNA sequencing, 10 days after transplantation. Specific-pathogen-free (SPF) mice were used for each experiments (N=4) as controls.
Project description:To explore the effects of gut microbiota of young (8 weeks) or old mice (18~20 months) on stroke, feces of young (Y1-Y9) and old mice (O6-O16) were collected and analyzed by 16s rRNA sequencing. Then stroke model was established on young mouse receive feces from old mouse (DOT1-15) and young mouse receive feces from young mouse (DYT1-15). 16s rRNA sequencing were also performed for those young mice received feces from young and old mice.
Project description:We found that mainstream cigarette smoking (4 cigarettes/day, 5 days/week for 2 weeks using Kentucky Research Cigarettes 3R4F) resulted in >20% decrease in the percentage of normal Paneth cell population in Atg16l1 T300A mice but showed minimal effect in wildtype littermate control mice, indicating that Atg16l1 T300A polymorphism confers sensitivity to cigarette smoking-induced Paneth cell damage. We performed cohousing experiments to test if Paneth cell phenotype is horizontally transmissible as is microbiota. Atg16l1 T300A and littermate controls that were exposed to cigarette smoking were used as microbiota donors, and these donor mice were exposed to smoking for 2 weeks prior to cohousing. Separate groups of Atg16l1 T300A and littermate controls that were not exposed to cigarette smoking were used as microbiota recipients. The microbiota recipients were co-housed with microbiota donors of the same genotype for 4 weeks, during this period the donors continued to be exposed to cigarette smoking. Cigarette smoking was performed using smoking chamber with the dosage and schedule as described above. At the end of the experiment, the fecal microbiota composition was analyzed by 16S rRNA sequencing.
Project description:Mitochondrial rRNAs play important roles in regulating mtDNA-encoded gene expression and energy metabolism subsequently. However, the proteins that regulate mitochondrial 16S rRNA processing remain poorly understood. Herein, we generated adipose-specific Wbscr16-/- mice and cells, both of which exhibited dramatic mitochondrial changes. Subsequently, WBSCR16 was identified as a 16S rRNA-binding protein essential for the cleavage of 16S rRNA-mt-tRNALeu, facilitating 16S rRNA processing and mitochondrial ribosome assembly. Additionally, WBSCR16 recruited RNase P subunit MRPP3 to nascent 16S rRNA and assisted in this specific cleavage. Furthermore, evidence showed that adipose-specific Wbscr16 ablation promotes energy wasting via lipid preference in brown adipose tissue, leading to excess energy expenditure and resistance to obesity. In contrast, overexpression of WBSCR16 upregulated 16S rRNA processing and induced a preference for glucose utilization in both transgenic mouse models and cultured cells. These findings suggest that WBSCR16 plays essential roles in mitochondrial 16S rRNA processing in mammals, and is the key mitochondrial protein to balance glucose and lipid metabolism.
Project description:We aimed to investigate the microbial community composition in patients with intracerebral hemorrhage (ICH) and its effect on prognosis. The relationship between changes in bacterial flora and the prognosis of spontaneous cerebral hemorrhage was studied in two cohort studies. Fecal samples from healthy volunteers and patients with intracerebral hemorrhage were subjected to 16S rRNA sequencing at three time points: T1 (within 24 hours of admission), T2 (3 days post-surgery), and T3 (7 days post-surgery) using Illumina high-throughput sequencing technology.