Project description:Aging is a major risk factor for various forms of disease. An enhanced understanding of the physiological mechanisms related to aging is urgently needed. Nonhuman primates (NHPs) have the closest genetic relationship to humans, making them an ideal model to explore the complicated aging process. Multiomics analysis of NHP peripheral blood offers a promising approach to evaluate new therapies and biomarkers. Here, we explored the mechanisms of aging using proteomics (serum and serum-derived exosomes [SDEs]) in rhesus monkey (Macaca mulatta) blood.
Project description:Aging is a major risk factor for various forms of disease. An enhanced understanding of the physiological mechanisms related to aging is urgently needed. Nonhuman primates (NHPs) have the closest genetic relationship to humans, making them an ideal model to explore the complicated aging process. Multiomics analysis of NHP peripheral blood offers a promising approach to evaluate new therapies and biomarkers. Here, we explored the mechanisms of aging using proteomics (serum) in rhesus monkey (Macaca mulatta) blood.
Project description:MicroRNAs are small non-coding RNAs that are critical in post-transcriptional regulation. According to the latest miRBase (v22), there are 617 annotated pre-miRNAs in Macaca mulatta, which is much less than 1917 in human, although both of these two species are primates. To improve the annotation of miRNAs in Macaca mulatta, we generated 12 small RNA profiles from 8 tissues and perform comprehensive analysis of these profiles. We identified 613 conserved pre-miRNAs that have not been reported in Macaca mulatta and 25 novel miRNAs. Furthermore, we identified 996 editing sites with significant editing levels from 250 pre-miRNAs after analyzing the 12 self-generated and 58 additional published sRNA-seq profiles from different types of organs or tissues. Our results show that the distribution of different miRNA editing types in Macaca mulatta is different from that in human brains. Particularly, there are much more small indel events in miRNAs of Macaca mulatta than in human brains. These results significantly increase our understanding of miRNAs and their editing events in Macaca mulatta.