Project description:Chronic exposure of Sprague-Dawley (SD) rats to either 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or Aroclor 1254 results in female-selective induction of hepatic tumors. The relative potency of dioxins and PCB mixtures, such as Aroclor 1254, is often estimated using the internationally endorsed toxic equivalency (TEQ) approach. Comparing the genome wide changes in gene expression in both genders following exposure to toxic equivalent doses of these chemicals should identify critical sets of early response genes while further defining the concept of the TEQ of halogenated aromatic hydrocarbons. Aroclor 1254 at 0.6, 6.0 and 60 mg/kg body weight and TEQ doses of TCDD (0.3 and 3.0 µg/kg), calculated to match the top two Aroclor 1254 doses, were orally administered to SD rats for three consecutive days. Day 4 gene expression in hepatic tissue was determined using microarrays. A linear mixed-effects statistical model was developed to analyze the data in relation to treatment, gender, and gender*treatment (G*T) interactions. The genes most changed included 54 genes with and 51 genes without a significant model G*T term. The known aryl hydrocarbon receptor (AHR) battery genes (Cyp1a1, Cyp1a2, Cyp1b1, Aldh3a1), and novel genes, responded in a TEQ dose-dependent manner in both genders. However, an important observation was the apparent disruption of sexually dimorphic basal gene expression, particularly for female rats. Since many of these genes are involved in steroid metabolism, exposure to either TCDD or Aroclor 1254 could disrupt proliferative signals more in female rats as a possible consequence of altered estrogen metabolism. This study extends the findings of previous rodent bioassays by identifying groups of genes, other than the well-characterized AHR response genes, whose disruption may be important in the tumorigenic mechanism in this rat strain. Keywords: dose response, Multifactor Linear Model
Project description:Pregnant rats (Long-Evans) were dosed perinatally with 0 or 6Â mg/kg/day of Aroclor 1254 from gestation day 6 through postnatal day (PND) 21. Gene expression in cerebellum and hippocampus from PND7 and PND14 animals was analyzed with an emphasis on developmental aspects. Changes in gene expression (>= 1.5 fold) in control animals identified normal developmental changes. These basal levels of expression were compared to data from Aroclor 1254-treated animals to determine the impact of gestational PCB exposure on developmental parameters. The results indicate that the expression of a number of developmental genes related to cell cycle, synaptic function, cell maintenance, and neurogenesis is significantly altered from PND7 to PND14. Aroclor 1254 treatment appears to dampen the overall growth-related gene expression levels in both regions with the effect being more pronounced in the cerebellum. Functional analysis suggests that Aroclor 1254 delays maturation of the developing nervous system, with the consequences dependent on the ontological state of the brain area and the functional role of the individual gene. Experiment Overall Design: Pregnant rats (Long-Evans) were dosed perinatally with 0 or 6Â mg/kg/day of Aroclor 1254 from gestation day 6 through postnatal day (PND) 21. Gene expression in cerebellum and hippocampus from PND7 and PND14 animals was analyzed with an emphasis on developmental aspects.
Project description:In this study, we exposed Caenorhabditis elegans wild types N2 to the model indirect-acting toxicants aflatoxin B1 (AFB1), benzo(a)pyrene (B(a)P), the PCB mixture Aroclor 1254 (PCB1254), and 2,3,7,8-tetrachlorodibenzodioxin (TCDD). In microarray experiments, we studied one concentration of AFB1 (30 μM), one concentration of B(a)P (30 μM), two concentrations of PCB1254 (1 μM and 30 μM), and two concentrations of TCDD (1 μM and 10 μM). As a control M9 medium with 0.5% DMSO was used. Age synchronized worms at developmental L4 larval stage were exposed to treatment for 24 hours. After flash freezing the samples, RNA was isolated, labeled and hybridized on oligo microarray (Agilent) slides.
Project description:Pregnant rats (Long-Evans) were dosed perinatally with 0 or 6 mg/kg/day of Aroclor 1254 from gestation day 6 through postnatal day (PND) 21. Gene expression in cerebellum and hippocampus from PND7 and PND14 animals was analyzed with an emphasis on developmental aspects. Changes in gene expression (≥ 1.5 fold) in control animals identified normal developmental changes. These basal levels of expression were compared to data from Aroclor 1254-treated animals to determine the impact of gestational PCB exposure on developmental parameters. The results indicate that the expression of a number of developmental genes related to cell cycle, synaptic function, cell maintenance, and neurogenesis is significantly altered from PND7 to PND14. Aroclor 1254 treatment appears to dampen the overall growth-related gene expression levels in both regions with the effect being more pronounced in the cerebellum. Functional analysis suggests that Aroclor 1254 delays maturation of the developing nervous system, with the consequences dependent on the ontological state of the brain area and the functional role of the individual gene. Keywords: time course, stress response
Project description:In rats, direct exposure to TCDD causes myriad toxicities. Exposed rats experience hepatotoxicity, wasting syndrome and immune suppression, amongst others. “Inherited exposure”, as occurs in the F3 generation of directly exposed F0 animals, has also been shown to cause toxicity: both male and female F3 rats demonstrate an increased incidence of adult onset disease, females also display reproductive abnormalities and increased incidence of ovarian diseases while males show increased incidence of kidney disease and an altered sperm epigenome. Here, we explore the hepatic transcriptomic profile of male and female F3 Sprague-Dawley rats bred through the paternal germ line from F0 dams exposed to a single dose of TCDD (0, 30, 100, 300 or 1000 ng/kg body weight) by oral gavage. We hypothesize that RNA transcripts with altered abundance in livers of unexposed F3 progeny of treated F0 Sprague-Dawley rats may result from epigenetic modifications to the genome. Female F3 rats demonstrated more TCDD-mediated hepatic transcriptomic changes than males, with differences primarily in the lowest dose group.
Project description:In rats, direct exposure to TCDD causes myriad toxicities. Exposed rats experience hepatotoxicity, wasting syndrome and immune suppression, amongst others. “Inherited exposure”, as occurs in the F3 generation of directly exposed F0 animals, has also been shown to cause toxicity: both male and female F3 rats demonstrate an increased incidence of adult onset disease while males show increased incidence of kidney disease and an altered sperm epigenome. Here, we employ bisulfite-sequencing to explore the methylation profile of male F3 Sprague-Dawley rats bred through the paternal germ line from F0 dams exposed to a single dose of TCDD (0 or 1000 ng/kg body weight) by oral gavage. We identified multiple significant differentially methylated regions (DMRs) affecting receptor genes, including multiple olfactory receptors, as well as Egfr and Mc5r, typically with increased methylation among the TCDD-exposed lineage relative to control lineage.
Project description:2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent aryl hydrocarbon receptor (AhR) agonist that elicits a broad spectrum of dose-dependent effects in the liver, including hepatic lipid accumulation coupled with inflammation. To determine the role of inflammatory lipid mediators in TCDD-mediated hepatotoxicity, eicosanoid metabolism was investigated in female Sprague-Dawley (SD) rats. Rats were gavaged with sesame oil vehicle or 0.01-10 µg/kg TCDD every 4 days for 28 days. Hepatic RNA-Seq data from female SD rats was compared with data from female C57BL/6 mice and functionally annotated to determine key toxicogenomic differences between the two species regarding TCDD exposure. Hepatic RNA-Seq data from female SD rats integrated with untargeted metabolomics of liver, serum, and urine identified dose-dependent changes in linoleic acid (LA) and arachidonic acid (AA) metabolism. TCDD also elicited dose-dependent differential gene expression associated with cyclooxygenase, lipoxygenase, and cytochrome P450 epoxidation/ hydroxylation pathways with corresponding changes in omega-6 (e.g. AA and LA) and omega-3 polyunsaturated fatty acids (PUFAs) as well as their eicosanoid metabolites. Overall, total omega-6 PUFAs increased, while total omega-3 PUFAs decreased. Phospholipase A2 (Pla2g12a) was induced 6-fold consistent with increased AA metabolism, while AA utilization by lipoxygenases Alox5 (2-fold) and Alox15 (10-fold) increased leukotrienes (LTs), important mediators signaling an inflammatory response. More specifically, TCDD increased pro-inflammatory eicosanoids, including leukotriene (LT) B4 (3-fold), and LTB3 (5-fold), known signals for the recruitment of neutrophils to areas of tissue damage. Dose-response modeling of metabolite and gene expression changes suggests the cytochrome P450 hydroxylase/epoxygenase and the lipoxygenase pathways are the most sensitive to TCDD. While several differentially expressed genes (DEGs) associated with eicosanoid biosynthesis contained putative dioxin response elements (pDRE) within their regulatory region, ChIP-Seq analysis showed little AhR enrichment, suggesting TCDD-elicited induction of eicosanoid biosynthesis is not a direct effect of AhR activation.
Project description:2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent aryl hydrocarbon receptor (AhR) agonist that elicits a broad spectrum of dose-dependent effects in the liver, including hepatic lipid accumulation coupled with inflammation. To determine the role of inflammatory lipid mediators in TCDD-mediated hepatotoxicity, eicosanoid metabolism was investigated in female Sprague-Dawley (SD) rats. Rats were gavaged with sesame oil vehicle or 0.01-10 µg/kg TCDD every 4 days for 28 days. Hepatic RNA-Seq data from female SD rats was compared with data from female C57BL/6 mice and functionally annotated to determine key toxicogenomic differences between the two species regarding TCDD exposure. Hepatic RNA-Seq data from female SD rats integrated with untargeted metabolomics of liver, serum, and urine identified dose-dependent changes in linoleic acid (LA) and arachidonic acid (AA) metabolism. TCDD also elicited dose-dependent differential gene expression associated with cyclooxygenase, lipoxygenase, and cytochrome P450 epoxidation/ hydroxylation pathways with corresponding changes in omega-6 (e.g. AA and LA) and omega-3 polyunsaturated fatty acids (PUFAs) as well as their eicosanoid metabolites. Overall, total omega-6 PUFAs increased, while total omega-3 PUFAs decreased. Phospholipase A2 (Pla2g12a) was induced 6-fold consistent with increased AA metabolism, while AA utilization by lipoxygenases Alox5 (2-fold) and Alox15 (10-fold) increased leukotrienes (LTs), important mediators signaling an inflammatory response. More specifically, TCDD increased pro-inflammatory eicosanoids, including leukotriene (LT) B4 (3-fold), and LTB3 (5-fold), known signals for the recruitment of neutrophils to areas of tissue damage. Dose-response modeling of metabolite and gene expression changes suggests the cytochrome P450 hydroxylase/epoxygenase and the lipoxygenase pathways are the most sensitive to TCDD. While several differentially expressed genes (DEGs) associated with eicosanoid biosynthesis contained putative dioxin response elements (pDRE) within their regulatory region, ChIP-Seq analysis showed little AhR enrichment, suggesting TCDD-elicited induction of eicosanoid biosynthesis is not a direct effect of AhR activation.
Project description:We report the RNAseq-based transcriptome profiles of rat gestation day 20 dam liver, fetal male and female liver, fetal male pituitary, and fetal testis following in utero exposure to either 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 2,3,7,8-tetrachlorodibenzofuran (TCDF). Two exposure models were examined: 1) pregnant rats exposed to either a dose response series of TCDD or TCDF from gestation day 6 - 20 or 2) pregnant rats exposed to a single dose of TCDD or TCDF on gestation day 15. These data support a mode-of-action for dioxin-induced rat male reproductive toxicity involving key events in both the fetal pituitary (reduced gonadotropin production) and fetal testis (reduced Leydig cell cholesterologenesis and steroidogenesis) which are hypothesized to decrease perinatal Sertoli cell proliferation and culminate in reduced spermatogenesis. The lack of a TCDF effect on proposed key events may be due to a higher rate of metabolic clearance relative to TCDD.