Project description:Plant roots are the primary site of perception and injury for saline-alkaline stress. The current knowledge of the saline-alkaline stress transcriptome is most focused on salt (NaCl) stress. Only a little alkaline (NaHCO3) stress transcriptome is limited to one time point after stress. Time-course analysis and comparative investigation on roots in the alkaline stress condition are needed to understand the gene response networks that are subject to alkaline tolerance. We used microarrays to detail the global programme of gene expression underlying NaHCO3 treatment and identified distinct classes of regulated genes during this process.
Project description:A comparative RNA-Seq analysis was done in root and shoot of Najran wheat cultivar between plants grown under two conditions: control (0 mM NaCl) and salt treatment (200 mM NaCl). The current study revealed differentially expressed genes and various associated biological pathways involved in plant responses to salt stress between the two conditions in the root and shoot plant tissues, providing important insights into the molecular mechanisms underlying salt tolerance in wheat.
Project description:Plant roots are the primary site of perception and injury for saline-alkaline stress. The current knowledge of the saline-alkaline stress transcriptome is most focused on salt (NaCl) stress. Only a little alkaline (NaHCO3) stress transcriptome is limited to one time point after stress. Time-course analysis and comparative investigation on roots in the alkaline stress condition are needed to understand the gene response networks that are subject to alkaline tolerance. We used microarrays to detail the global programme of gene expression underlying NaHCO3 treatment and identified distinct classes of regulated genes during this process. Three week old Glycine soja seedling roots from 3cm root apex were harvested in two independent biological replicates after 0, 0.5, 1, 3, 6, 12 and 24h treatment with 50mmol/L NaHCO3 stress for RNA extraction and hybridization on Affymetrix microarrays. To minimize biological variance, roots from three plants originating from the same experiment, condition and cultivar was pooled.
Project description:Arabidopsis Col-0 seeds were germinated and grown for two weeks on Arabidopsis thaliana salt media (ATS, control) or ATS media supplemented 50, 75, 100 or 125 mM NaCl that imposes both an ionic and osmotic stress; or ATS media supplemented with iso-osmolar concentrations of sorbitol (100, 150, 200 or 250 mM) that imposes only an osmotic stress. The aim of the study was to identify genes involved in plant growth and adaptation to ionic stress compared to genes involved in growth and adaptation to osmotic stress conditions. To do this we identified lists of genes that are differentially expressed in plants grown in NaCl (A) and lists of genes differentially expressed in plants grown in sorbitol (B). We then compared these lists to find ionic/salt-specific genes that are only expressed in plants grown in NaCl and not in plants grown in sorbitol; and osmotic genes that are expressed both in plants grown in NaCl and in plants grown in sorbitol. Associated publication: Cackett et al. (2022) Salt-specific gene expression reveals elevated auxin levels in Arabidopsis thaliana plants grown under saline conditions, DOI: 10.3389/fpls.2022.804716
2022-01-16 | GSE193762 | GEO
Project description:Comparative RNA-seq of Wheat plants grown under salt stress (200 mM NaCl) conditions
Project description:Arabidopsis thaliana is a glycophyte with a low salt tolerance, while Eutrema is a halophyte with a very high salt tolerance. To elucidate the transcriptional basis of this difference, we performed hydroponis culture experiments where we grew plants under control conditions (25 mM NaCl) or under salt stress (200 mM NaCl for both species, 500 mM for Eutrema). Salt concentration was increased for the stress treatments by increments of 50 mM per day (25 mM on the first day). Plants were grown at the final NaCl concentration for an additional week, when rosettes were harvested for RNA isolation.Expression patterns were compared between treatments and between species.
Project description:Purpose: High carbonate and bicarbonate concentrations of calcareous soils with high pH can affect crop performance due to different constraints. The goal of this study is to perform a comparative transcriptomic analysis using demes moderate-tolerance and sensitive under alkaline stress ( high pH 8.3 and 10 mM NaHCO3) Methods: Transcriptomic analysis was performed on two naturally selected Arabidopsis thaliana demes. Carbon soil tolerant A1(c+) and the sensitive T6(c-). Plants 15 day-old were exposed for 3 or 48 h to either pH stress alone (pH 5.9 vs pH 8.3 adjusted by BTP and MES buffers) or to alkaline stress (pH 8.3) caused by 10 mM of Results Shoot transcriptome analysis revealed that bicarbonate quickly (3 h) induced Fe-deficiency related genes in T6(c-) leaves, while in A1 (c+) main initial changes were found in receptor-like proteins (RPL), jasmonate (JA) and salicylate (SA) pathways, methionine-derived glucosinolate (GS), Sulphur starvation, starch degradation, and cell cycle. Conclusions: Our results suggest that leaves of carbonate tolerant plants do not sense iron deficiency as fast as sensitive ones. This is in line with the ability to translocate more iron to aerial parts, producing a higher biomass and maintaining silique production. In leaves of A1(c+) plants, the activation of other genes related to apoplastic stress perception, signal transduction, GS, sulphur acquisition, and cell cycle regu-lation precedes the induction of iron homeostasis mechanisms yielding an efficient response to bicarbonate stress
Project description:A comparative transcriptomic study of the impact of salt toxicity on rice plant (Oryza sativa L.; cv 'I Kong Pao') after short term (48 hours) exposure to NaCl (200 mM) or Na2SO4 (100 mM). Twenty five days old rice seedlings were exposed to 0, 200 mM NaCl or 100 mM Na2SO4 for 48 hours in hydroponic culture. Comparison between control and salt-stressed plants were done at the shoot and the root levels. The essays were replicated twice on two independent plant cultures.
Project description:In this project a proteomic comparative analysis was used to analyse the changes induced by different nitrate availability in roots of M4 grapevine rootstock. Plants, previously adapted to hydroponic condition, were grown for 5 weeks, afterwards nitrogen was removed from the growing medium for eight days to obtain N-starved plants. After this period, the analysis compared plants maintained in absence of nitrogen with plants exposed to 10 mM nitrate for 30 hours.
Project description:To explore the mechanisms of cotton response to this alkaline stress, we used next-generation sequencing (NGS) technology to study transcriptional changes of cotton under NaHCO3 alkaline stress. A total of 18,230 and 11,177 differentially expressed genes (DEGs) were identified in cotton roots and leaves, respectively. Gene ontology (GO) analysis indicated the enrichment of DEGs involved in various stimuli or stress responses. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that DEGs associated with plant hormone signal transduction, amino acid biosynthesis, and biosynthesis of secondary metabolites were regulated in response to the NaHCO3 stress. We further analyzed genes enriched in secondary metabolic pathways and found that secondary metabolites were regulated to eliminate the reactive oxygen species (ROS) and improve the cotton tolerance to the NaHCO3 stress. In this study, we learned that the toxic effect of NaHCO3 was more profound than that of NaOH at the same pH. Thus, Na+, HCO3- and pH had a great impact on the growth of cotton plant. The novel biological pathways and candidate genes for the cotton tolerance to NaHCO3 stress identified from the study would be useful in the genetic improvement of the alkaline tolerance in cotton.