Project description:Modulation of gut microbiota through probiotic supplementation is an interesting strategy to prevent obesity We use microarrays to study the global genome expression of C. elegans fed with the probiotic strain Bifidobacterium animalis sbsp. lactis CECT 8145
Project description:This study investigated the effect of a novel probiotic preparation on the colonic mucosal gene expression in UC patients, using whole genome gene expression microarrays.
Project description:Whole genome DNA microarray designed for the probiotic L. johnsonii strain NCC533 was used for comparative genomic hybridization (CGH) of L. johnsonii ATCC 33200T, L. johnsonii BL261, L. gasseri ATCC 33323T and L. iatae BL263 (CECT 7394T). In these experiments, the fluorescence ratio distributions obtained with L. iatae and L. gasseri showed characteristic inter-species profiles. The percentage of conserved L. johnsonii NCC533 genes was about 83% in the L. johnsonii strains comparisons and decreased to 51% and 47% for L. iatae and L. gasseri, respectively. These results confirmed the separate status of L. iatae from L. johnsonii at the level of species, and also that it is closer to L. johnsonii than L. gasseri.
Project description:To confirm epithelial gene expression of the large intestine after inoculation of dead (heat-treatment) or live Bifidobacterium probiotic strain (BbrY) we have employed whole genome microarray expression profiling. The epithelial cells were released from dead or live BbrY associated mice 3 or 28 days after association and GF mice with HANKS including EDTA and Hepes and treated by TRI-zol reagent. It was confirmed that the live BbrY associated mice were affected epithelial gene expression much more than dead cell feeding by K-means clustering and the functional categories.
Project description:Modulation of gut microbiota through probiotic supplementation is an interesting strategy to prevent obesity We use microarrays to study the global genome expression of C. elegans fed with the probiotic strain Bifidobacterium animalis sbsp. lactis CECT 8145 Wild type strain N2 of C. elegans was cutured in Nematode Growth medium (NGM, control fed) or NGM with a bacterial lawn fed of the strain B. animalis subsp. lactis CECT 8145, until reach young adult stage. Worm population were age-synchronized. RNA was isolated from each populations (control and treated) using RNAasy Kit (Qiagen) and hybridizated on Affymetrix microarrays.
Project description:We used a whole genome array containing 97.4 % of the annotated genes of Lactobacillus acidophilus NCFM, a probiotic culture that belongs to the lactic acid bacteria group, to identify genes that are differentially expressed under several stress conditions. Keywords: Stress response
Project description:The present study reports comparative surfacomics (study of cell-surface exposed proteins) of the probiotic Lactobacillus rhamnosus strain GG and the dairy strain Lc705.
Project description:Escherichia coli Nissle 1917 (EcN) is a probiotic used for treatment of intestinal disorders. EcN improves gastrointestinal homeostasis and microbiota balance; however little is known about how this probiotic delivers effector molecules to the host. Outer membrane vesicles (OMVs) are constitutively produced by gram-negative bacteria and have a relevant role in bacteria-host interactions. Here we performed proteomic analysis of EcN OMVs. Using 1D SDSD-PAGE and highly sensitive LC-MS/MS analysis we identified 192 EcN vesicular proteins with high confidence in three independent experiments. Of these proteins, 18 were encoded by strain-linked genes and 57 were common to pathogen-derived OMVs. These proteins may contribute to the ability of this probiotic to colonize the human gut as they fulfil functions related to adhesion to host tissues, immune modulation or bacterial survival in host niches. This study describes the first global OMV proteome of a probiotic strain and provides evidence that probiotic-derived OMVs contain proteins that can target these vesicles to the host and mediate their beneficial effects on intestinal function.
Project description:Genome-wide transcriptional analysis in intestinal epithelial cells (IEC) can aid in elucidating the impact of single versus multi-stain probiotic combinations on immunological and cellular mechanism of action. In this study we used an in vitro intestinal epithelial cell model to investigate the impact of three probiotic bacteria individually or in combination and a surface-layer protein (SLP) partially purified from one of the bacteria on HT-29 cells’ response to a known pro-inflammatory stimulus, polyinosinic:polycytidylic, poly(I:C). Human expression microarray chips were used to evaluate the effect of Lactobacillus helveticus R0052, Bifidobacterium longum subsp. infantis R0033 and Bifidobacterium bifidum R0071 individually, in combination and of a surface-layer protein (SLP) partially purified from R0052 on HT-29 cells’ transcriptional profile to poly(I:C)-induced inflammation. Hierarchical heat map clustering, Set Distiller and String analyses revealed that the effects of R0052 and R0071 diverged from that of R0033 and R0052-SLP. It was evident from the global analyses with respect to the immune, cellular and homeostasis related pathways that the co-challenge with probiotic combination (PC) vastly differed in its effect from the single strains and R0052-SLP treatments. The multi-strain PC resulted in a greater reduction of modulated genes, found through functional connections between immune and cellular pathways. Cytokine and chemokine analyses based on specific outcomes from the TNF-α and NF-κB signaling pathways revealed single, multi-strain and R0052-SLP specific attenuation of the majority of proteins measured (TNF-α, IL-8, CXCL1, CXCL2 and CXCL10), indicating potentially different mechanisms. These findings indicate a synergistic effect of the bacterial combinations relative to the single strain and R0052-SLP treatments in resolving toll-like receptor 3 (TLR3)-induced inflammation in IEC and maintaining cellular homeostasis, reinforcing the rationale for using multi-strain formulations as a probiotic.
Project description:Transcriptional profiling of probiotic Lactobacillus rhamnosus strain GG mid-exponential pH-controlled bioreactor cultures before and after exposure to bovine bile (0.2% ox gall). Keywords: bile, stress response