Project description:Gut microbiota were assessed in 540 colonoscopy-screened adults by 16S rRNA gene sequencing of stool samples. Investigators compared gut microbiota diversity, overall composition, and normalized taxon abundance among these groups.
Project description:This study was performed to determine the effects of dietary fat sources, i.e., beef tallow, soybean oil, olive oil and coconut oil (each 3% in feed), on the growth performance, meat quality and gene expression in growing-finishing pigs. The results of this study indicate that the type of dietary fat affects fatty acid composition and insulin signaling-related gene expression in the longissimus dorsi muscle of pigs.
Project description:The impact of mono-chronic S. stercoralis infection on the gut microbiome and microbial activities in infected participants was explored. The 16S rRNA gene sequencing of a longitudinal study with 2 sets of human fecal was investigated. Set A, 42 samples were matched, and divided equally into positive (Pos) and negative (Neg) for S. stercoralis diagnoses. Set B, 20 samples of the same participant in before (Ss+PreT) and after (Ss+PostT) treatment was subjected for 16S rRNA sequences and LC-MS/MS to explore the effect of anti-helminthic treatment on microbiome proteomes.
Project description:To investigate effects of long-term intake of RPS on gene expression in the colon and liver of pigs,thirty-six Duroc × Landrace × Large White growing barrows were randomly allocated to corn starch (CS) and RPS groups. Each group consisted of six replicates (pens), with three pigs per pen. Pigs in the CS group were offered a corn/soybean-based diet, while pigs in the RPS group were put on a diet in which 230 g/kg (growing period) or 280 g/kg (finishing period) purified corn starch was replaced with purified RPS during a 100-day trial. Liver transcriptomic results showed that the expression of CD36, CPT1B and ACADM was down-regulated, while AGPAT4, GPAT, FABP1 and FABP3 were up-regulated by the RPS diet, indicating a decrease in fatty acid intake and synthesis, and an increase in fatty acid oxidation and glycerophospholipid synthesis.Analysis of the colonic transcriptome profiles revealed that the RPS diet changed the colonic expression profile of the host genes mainly involved in immune response pathways. RPS significantly increased proinflammartory cytokine IL-1? gene expression and suppressed genes involved in lysosome. Thirty-six Duroc × Landrace × Large White growing barrows (70 days of age, 23.78 ± 1.87 kg) were randomly allocated to two groups, each group consisting of three pigs per pen, and six replicates. Pigs in the control group were offered a corn/soybean-based diet, while 230 g/kg purified corn starch (CS) was replaced with purified RPS in the RPS diet group. Diets were formulated according to the nutrient requirements of the National Research Council (1998). When animals reached the age of 120 days, diets were adapted to the nutrient requirements of the animals (finishing diet) and the amount of purified starch increased to 280 g of CS or RPS per kilogram of feed. Pigs had unlimited access to feed and water throughout the experimental period, which consisted of two 50-day trials in which the pigs consumed the growing diet (days 0-50) and finishing diet (days 51-100), respectively. On day 100, one pig from each replicate that met the target slaughter weight (105 to 110 kg) was slaughtered. The liver and colonic mucosa tissues were collected and preserved in liquid nitrogen for gene expression analysis.
Project description:This study was performed to determine the effects of dietary fat sources, i.e., beef tallow, soybean oil, olive oil and coconut oil (each 3% in feed), on the growth performance, meat quality and gene expression in growing-finishing pigs. The results of this study indicate that the type of dietary fat affects fatty acid composition and insulin signaling-related gene expression in the longissimus dorsi muscle of pigs. Effects of dietary fat types on meat quantity, meat quality and gene expression in pig.
Project description:Growing and finishing phases are two important animal production stages, which differ fundamentally in compositional growth. However, the physiological mechanisms altered concomitantly with the shift in whole-body compositional gain as cattle fatten (growing vs. finished steers), are poorly understood. Microarray analysis using the Bovine Gene 1.0 ST Array was conducted to determine shifts in hepatic genomic expression profiles of growing vs. finishing beef steers. The specific overall hypothesis tested was that genes involved in amino acid, carbohydrate and lipid metabolism, antioxidant capacity and immune responses were differentially expressed in growing vs. finishing steers.
Project description:The association between soil microbes and plant roots is present in all natural and agricultural environments. Microbes can be beneficial, pathogenic, or neutral to the host plant development and adaptation to abiotic or biotic stresses. Progress in investigating the functions and changes in microbial communities in diverse environments have been rapidly developing in recent years, but the changes in root function is still largely understudied. The aim of this study was to determine how soil bacteria influence maize root transcription and microRNAs (miRNAs) populations in a controlled inoculation of known microbes over a defined time course. At each time point after inoculation of the maize inbred line B73 with ten bacterial isolates, DNA and RNA were isolated from roots. The V4 region of the 16S rRNA gene was amplified from the DNA and sequenced with the Illumina MiSeq platform. Amplicon sequencing of the 16S rRNA gene indicated that most of the microbes successfully colonized maize roots. The colonization was dynamic over time and varied with the specific bacterial isolate. Small RNA sequencing and mRNA-Seq was done to capture changes in the root transcriptome from 0.5 to 480 hours after inoculation. The transcriptome and small RNA analyses revealed epigenetic and transcriptional changes in roots due to the microbial inoculation. This research provides the foundational data needed to understand how plant roots interact with bacterial partners and will be used to develop predictive models for root response to bacteria.