Project description:Transcripts of the gill epithelium from three different stocks of Atlantic salmon (Salmo salar) migrating from freshwater river to lake (Saimaa stock, SS), brackish water (Neva stock, NS) or seawater (Teno stock, TS) were compared at three successive developmental stages (parr, smolt and postsmolt) using the 16K GRASP cDNA microarray platform.
Project description:This study investigates sex-biased gene expression between populations of Atlantic and Pacific salmon lice, Lepeophtheirus salmonis. Two Atlantic L. salmonis populations were previously used for an array study (GSE56024) while a third dataset using Pacific L. salmonis was novel. Using all three populations, a consensus-based, meta-analysis approach was used to identify sex-biased and sex-specific genes.
Project description:Swimming performance correlates with fitness of Atlantic salmon in the wild and farm conditions. Variation of this trait in salmon populations is high. The study assessed relationship between two parameters of swimming performance: the ability to cope with moderate and maximum swimming efforts.
Project description:Infectious diseases among fish present an important economic burden for the aquaculture and fisheries industries around the world. For example, the infectious salmon anemia virus (ISAV) is known to infect farmed Atlantic salmon (Salmo salar), and results in millions of dollars of lost revenue to salmon farmers. Although improved management and husbandry practices over the last few years have minimized the losses and the number of outbreaks, the risk of new virulent isolates emerging is still a looming threat to the viability and sustainability of this industry. An understanding of the host-pathogen interactions at the molecular level during the course of an infection thus remains of strategic importance for the development of molecular tools and efficient vaccines capable of minimizing losses in the eventual case of a new outbreak. Using a 32 k cDNA microarray platform (cGRASP), we have studied various signaling pathways and immune regulated genes, activated or repressed, in Atlantic salmon head-kidney during the course of an ISAV infection. Gene expressions were measured at 5 different time-points: 6h, 24h, 3d, 7d and 16d post infection to get an overall view of changes as they occurred in time. The earliest time points showed only a few differentially expressed genes in infected fish, relative to controls, although as time progressed, many additional genes involved in key defense pathways were up-regulated including MHC type I, beta-2 microglobulin, TRIM 25 and CC-chemokine 19. During the latest stage of the infection process, many genes related to oxygen transportation were under-expressed, which correlates well with the anemia observed prior to death in Atlantic salmon infected with virulent strains of ISAV. Atlantic salmon smolts from 2 families of Atlantic salmon were IP injected with either 0.1mL of 10e5 TCID50 mL-1 of virus or 0.1mL of sham solution (L15 culture medium) and divided equally in four 1000 L tanks: 2 duplicate tanks containing ISAV injected fish and 2 duplicate control tanks containing sham solution injected fish. Four fish per family were sampled immediately prior to injection. An additional two fish per family per tank (four fish per family total) were sampled at 6h, 24h, 3d, 7d and 16d post injection. Head-kidney was dissected from each fish and used for microarray analysis. ISAV infected Atlantic salmon were compared to non-infected Atlantic salmon for each time-point.
Project description:Infectious diseases among fish present an important economic burden for the aquaculture and fisheries industries around the world. For example, the infectious salmon anemia virus (ISAV) is known to infect farmed Atlantic salmon (Salmo salar), and results in millions of dollars of lost revenue to salmon farmers. Although improved management and husbandry practices over the last few years have minimized the losses and the number of outbreaks, the risk of new virulent isolates emerging is still a looming threat to the viability and sustainability of this industry. An understanding of the host-pathogen interactions at the molecular level during the course of an infection thus remains of strategic importance for the development of molecular tools and efficient vaccines capable of minimizing losses in the eventual case of a new outbreak. Using a 32 k cDNA microarray platform (cGRASP), we have studied various signaling pathways and immune regulated genes, activated or repressed, in Atlantic salmon head-kidney during the course of an ISAV infection. Gene expressions were measured at 5 different time-points: 6h, 24h, 3d, 7d and 16d post infection to get an overall view of changes as they occurred in time. The earliest time points showed only a few differentially expressed genes in infected fish, relative to controls, although as time progressed, many additional genes involved in key defense pathways were up-regulated including MHC type I, beta-2 microglobulin, TRIM 25 and CC-chemokine 19. During the latest stage of the infection process, many genes related to oxygen transportation were under-expressed, which correlates well with the anemia observed prior to death in Atlantic salmon infected with virulent strains of ISAV.
Project description:This study investigates the baseline or inducible differences in between populations of Atlantic salmon lice Lepeophtheirus salmonis with differing levels of resistance to the parasiticidal drug emamectin benzoate (EMB), as well as the induced effects of EMB exposure to Pacific salmon lice. F1 generation lice were exposed in bioassays to a dilution series of emamectin benzoate. Two separate experiments were conducted, one for Atlantic and one for Pacific salmon lice (to be analyzed separately). Atlantic pre-adult salmon lice, separated into male and female, and sensitive or resistant to EMB populations, and exposed to a dilution series: 0 (control), 0.1, 25, 300, and 1000 parts per billion EMB. For each combination four biological replicates were included, except male resistant 25 (n = 3) and female resistant 300 (n = 2). Pacific pre-adult lice of both sexes were exposed to a dilution series: 0 (control), 25, 50 parts per billion EMB.
Project description:This study investigates sex-biased gene expression between populations of Atlantic and Pacific salmon lice, Lepeophtheirus salmonis. Two Atlantic L. salmonis populations were previously used for an array study (GSE56024) while a third dataset using Pacific L. salmonis was novel. Using all three populations, a consensus-based, meta-analysis approach was used to identify sex-biased and sex-specific genes. Two separate experiments were conducted, one for Atlantic and one for Pacific salmon lice. As the Atlantic data has been previously published for other comparisons (GSE56024), only the Pacific data is uploaded here. Lice from three populations (2 in the Atlantic and 1 in the Pacific) were collected for in vitro bioassay analysis using emamectin benzoate. After 24hrs, lice were collected as per treatment protocol below. Males and females from all populations were compared separately before forming a consensus probe list of sex-biased genes concordantly expressed across all three populations. Please note that each raw data file contains three or four 'block' data and each block data correspond to individual sample raw data. Therefore, each raw data file contains raw data for 3-4 samples (as indicated in the description field).
Project description:This study investigates the baseline or inducible differences in between populations of Atlantic salmon lice Lepeophtheirus salmonis with differing levels of resistance to the parasiticidal drug emamectin benzoate (EMB), as well as the induced effects of EMB exposure to Pacific salmon lice. F1 generation lice were exposed in bioassays to a dilution series of emamectin benzoate.
Project description:SALARECON links the Atlantic salmon genome to metabolic fluxes and growth, focusing on energy, amino acid, and nucleotide metabolism.
Project description:A common-garden experiment was carried out to compare two genetically distinct strains of Atlantic salmon (Salmo salar) fed diets formulated with either high (CHO) or low (NoCHO) carbohydrate (starch). Twenty salmon from either a commercial farmed strain or a land-locked population were placed in two tanks (10 fish of each population in each tank) and fed either CHO or NoCHO feeds for 32 days. At the end of the experimental period fish were fasted for 8 h, euthanized and samples of blood and liver collected. Both diet and population had an effect on circulating glucose levels with land-locked salmon showing hypoglycaemia and dietary starch increasing this parameter. In contrast, land-locked salmon showed increased plasma triacylglycerol levels regardless of dietary treatment. This enhanced ability to metabolise dietary starch in land-locked compared to farmed salmon stock was also reflected at a molecular (gene) level as most of the metabolic pathways evaluated in the present study were mainly affected by the factor population rather than by diet. In particular, lower expression of genes for mitochondrial metabolism in land-locked salmon reflects drastic differences in energy metabolism between the populations. The liver transcriptome analysis highlighted some new gene candidates such as elovl6 to evaluate in future studies assessing the capacity of salmonids to cope with feeds containing higher levels of dietary starch.