Project description:The freshwater mussel Dreissena bugensis was exposed for nine days to different microplastic particles, in detail, to three petroleum-based polymers (polyamide (PA), polyethylene terephthalate (PET), polystyrene (PS)), to one bio-based polymer (polylactic acid (PLA)) and to ground mussel shells (MS), serving as a natural particle control (size range: 20-75 µm;1000 p ml-1). Behavior endpoints were analyzed with hall sensor based real-time valvometry. Additionally, biochemical alterations of ROS detoxifying enzymes were analyzed, and a proteomic profiling on digestive gland tissue was performed.
Project description:To get further insights on the micro-nanoplastic (MNP) effects on plants, the aim of this study was to: 1) shed light on the transcriptome changes provoked by two different polyethylene terephthalate (PET) MNPs in plant roots; 2) determine their effects on key plant growth parameters in hydroponically-cultivated Arabidopsis thaliana. MNPs of transparent (Tr-PET) and blue (Bl-PET) material caused a significant reduction in root length, while only Bl-PET significantly reduced rosette area. Plant fresh and dry weight did not change, even though various OJIP-test parameters decreased in the presence of MNPs. RNA-seq data showed that Bl-PET and, especially, Tr-PET affected gene expression in comparison to controls. Tr-PET induced starch degradation and isoprenoids, while glycolysis, trehalose metabolism and fermentation were generally repressed. Tr-PET upregulated genes involved in signaling of xenobiotics, whereas Bl-PET scarcely affected root transcriptomic profile, activating few gene categories for abiotic stresses. Regarding hormones, genes involved in ABA response were repressed, while brassinosteroid-related genes were differentially regulated by Tr-PET. Both MNPs, but especially Tr-PET, upregulated major latex protein-related genes. These results allowed to gain insight into the effects of MNP contamination in plant metabolism, identifying targets for biotechnological strategies to enhance plant tolerance and phytoremediation of these xenobiotic agents.
Project description:Synthetic plastics, like polyethylene terephthalate (PET), have become an essential part of modern life. Many of these products are remarkably persistent in the environment, and the accumulation in the environment is recognised as a major threat. Therefore, an increasing interest has been paid to screen for organisms able to degrade and assimilate the plastic. Ideonella sakaiensis was isolated from a plastisphere, a bacterium that solely was thriving on the degradation on PET films. The processes affected by the presence of PET, terephthalic acid, ethylene glycol, ethyl glycolate, and sodium glyoxylate monohydrate was elucidated by differential proteomes. The exposure of PET and its monomers seem to affect two major pathways, the TCA cycle and the β-oxidation pathway, since multiple of the conditions resulted in an increased expression of proteins directly or indirectly involved in these pathways, underlying the importance in the degradation of PET by I. sakaiensis.
Project description:Synthetic plastics, like polyethylene terephthalate (PET), have become an essential part of modern life. Many of these products are remarkably persistent in the environment, and the accumulation in the environment is recognised as a major threat. Therefore, an increasing interest has been paid to screen for organisms able to degrade and assimilate the plastic. Ideonella sakaiensis was isolated from a plastisphere, a bacterium that solely was thriving on the degradation on PET films. The processes affected by the presence of PET, terephthalic acid, ethylene glycol, ethyl glycolate, and sodium glyoxylate monohydrate was elucidated by differential proteomes. The exposure of PET and its monomers seem to affect two major pathways, the TCA cycle and the β-oxidation pathway, since multiple of the conditions resulted in an increased expression of proteins directly or indirectly involved in these pathways, underlying the importance in the degradation of PET by I. sakaiensis.