Project description:In a cellular field of the early spider embryo, Hedgehog signaling operates to specify a “fuzzy” French-flag-like pattern along the primary axis. We applied single-cell and single-nucleus RNA sequencing to the early spider embryo. We confirmed that these techniques successfully detected three cell population corresponding to germ layers and some known cell types. We showed that the data had sufficient information for reconstruction of a correct global polarity of the presumptive ectoderm.
2022-05-04 | GSE201705 | GEO
Project description:Drosophila melanogaster genomes from museum specimens
Project description:Spiders are a highly diverse group of arthropods that occur in most habitats on land. Notably, spiders have significant ecological impact as predators because of their extraordinary prey capture adaptations, venom and silk. Spider venom is among the most heterogeneous animal venoms and has pharmacological applications, while spider silk is characterized by great toughness with potential for biomaterial application. We describe the genome sequences of two spiders representing two major taxonomic groups, the social velvet spider Stegodyphus mimosarum (Araneomorphae), and the Brazilian white-knee tarantula Acanthoscurria geniculata (Mygalomorphae). We annotate genes using a combination of transcriptomic and in-depth proteomic analyses. The genomes are large (2.6 Gb and 6 Gb, respectively) with short exons and long introns and approximately 50% repeats, reminiscent of typical mammalian genomes. Phylogenetic analyses show that spiders and ticks are sister groups outgrouped by mites, and phylogenetic dating using a molecular clock dates separation of velvet spider and tarantula at 270 my. Based on the genomes and proteomes, we characterize the genetic basis of venom and silk production of both species in detail. Venom protein composition differs markedly between the two spiders, with lipases as the most abundant protein in the velvet spider and present only at low concentration in tarantula. Venom in both spiders contains proteolytic enzymes, and our analyses suggest that these enzymes target and process precursor peptides that subsequently mediate the toxic effects of venom. Complete analysis of silk genes reveal a diverse suite of silk proteins in the velvet spider including novel types of spidroins, and dynamic evolution of major ampullate spidroin genes, whereas silk protein diversity in tarantula is far less complex. The difference in silk proteins between species is consistent with a more complex silk gland morpholgy and use of three-dimentional capture webs consisting of multiple silk types in aranomorph spiders.
Project description:The common house spider Parasteatoda tepidariorum is a chelicerate model organism for studying developmental mechanisms and their evolution in arthropods. In contrast to the well-studied model insect, Drosophila melanogaster, embryos of the spider undergo patterning in a cellular environment from early stages (at least after the number of the nuclei increase to 16). Use of spider embryos provide new opportunities to understand the evolution of developmental mechanisms underlying arthropod body plans. This analysis aims to generate genome-scale, developmental profiles of gene expression in embryos of the spider P. tepidariorum, which facilitate a wide range of studies using this spider species.
Project description:This SuperSeries is composed of the following subset Series: GSE31525: Spider mite preliminary feeding experiment with mites reared on bean and two Arabidopsis thaliana accessions GSE31527: Developmental stage-specific gene expression in the two-spotted spider mite (Tetranychus urticae) GSE32005: Developmental stage-specific small RNA composition in the two-spotted spider mite (Tetranychus urticae) GSE32009: Transcriptional responses of the two-spotted spider mite (Tetranychus urticae) after transfer to different plant hosts Refer to individual Series
Project description:Transcriptional profiling of Candida albicans comparing SDH2 deletion mutant cells with the wild-type cells in both Spider medium and Spider medium supplemented with 100mM glucose
Project description:Transcriptional profiling of Candida albicans comparing SDH2 deletion mutant cells with the wild-type cells in both Spider medium and Spider medium supplemented with 100mM glucose The SDH2 deletion mutant sdh2Î/Î and the wild-type strain SC5314 were used to perform the microarray experiments. Two-condition experiments: sdh2Î/Î vs SC5314 in Spider midium and sdh2Î/Î vs SC5314 in Spider midium supplemented with 100mM glucose. Biological replicates: 3 SDH2 deletion mutant sdh2Î/Î samples (test group), 3 wild-type strain SC5314 samples (control group), independently grown and harvested. One replicate per array.
Project description:Spider mites, including the two-spotted spider mite (Tetranychus urticae, TSSM) and the Banks grass mite (Oligonychus pratensis, BGM), are becoming increasingly important agricultural pests. The TSSM is an extreme generalist documented to feed on more than 1100 plant hosts. In contrast, the BGM is a grass specialist, with hosts including important cereal crops like maize, wheat, sorghum and barley. Historically, studies of plant-herbivore interactions have focused largely on insects. However, far less is known about plant responses to spider mite herbivores, especially in grasses, and whether responses differ between generalists and specialists. To identify plant defense pathways responding to spider mites, we collected time course RNA-seq data from barley (Hordeum vulgare L.) infested with TSSMs and BGMs. Additionally, and as a comparison to the physical damage caused by spider mite feeding, a wounding treatment was also included.
Project description:In the spider Achaearanea tepidariorum, Hedgehog (Hh) signaling plays a key role in the formation of the two major embryonic axes. Analyses of expression patterns of the spider hh homolog, At-hh, suggested that Hh signaling might be involved in the subsequent segmentation process also. In this microarray experiment, we attempted to identify candidate genes whose expressions are regulated by Hh signaling during early phases of spider segmentation.