Project description:The process of Saccharomyces cerevisiae spore germination includes breakage of dormancy, morphological changes and resumption of vegetative growth. We have determined the global transcriptional response during the first two hours of spore germination in response to rich growth medium and glucose alone, and identified possible transcription factors regulating the different transcriptional programs. Saccharomyces cerevisiae Y55 spores subjected to YPD and glucose 2%. Samples are taken in triplicates (except for glucose 0 min were duplicates were taken) in time course series after glucose and nutrient addition. Total of 18 samples. RNA from dormant spores was used as reference RNA for all microarrays.
Project description:The process of Saccharomyces cerevisiae spore germination includes breakage of dormancy, morphological changes and resumption of vegetative growth. We have determined the global transcriptional response during the first two hours of spore germination in response to rich growth medium and glucose alone, and identified possible transcription factors regulating the different transcriptional programs.
Project description:To map post-meiotic segregation (PMS) across the yeast genome, we genotyped the two cells resulting from the first mitotic division of the four spores of 4 tetrads of a YJM789/S96 Saccharomyces cerevisiae hybrid strain. Sporulation was induced, tetrads were dissected, spores let to germinate and the two cells coming from the first mitotic division of each spore were finally dissected. DNA from each of the eight cells in each tetrad was extracted from independent overnight cultures in rich medium and hybridized to microarrays, one array per cell. Each hybridization was used to genotype the corresponding cell and genetic differences between the two cells from the same spore revealed PMS. Therefore there are 32 hybridization files, 2 per spore and 8 per tetrad.
Project description:We used RNA-Seq to measure transcript abundance in 15 Saccharomyces cerevisiae strains from a diverse range of genetic lineages when growing in rich media (YPD) to characterize differential expression across strains.
2021-04-07 | GSE171585 | GEO
Project description:Spore germination in Saccharomyces cerevisiae
Project description:Heat-treated spores show delayed and slower germination and outgrowth compared to untreated spores presumably due to spore damage repair. This study was performed to identify genes possibly involved in spore damage repair in B. cereus. In this study we compared the transcriptomic profiles of untreated and heat-treated spores during germination and outgrowth in BHI at 30C.
Project description:To study the signals and pathways underlying spore germination we examined the global changes in gene expression during this process. We find that the germination process can be divided into two distinct stages. During the first stage, the induced spores respond only to glucose. The transcription program during this stage recapitulates the general transcription response of yeast cells to glucose. Only during the second phase are the cells able to sense and respond to other nutritional components in the environment. Components of the mitotic machinery are involved in spore germination but in a distinct pattern. In contrast to the mitotic cell cycle, growth related events during germination are not coordinated with nuclear events and are separately regulated. Genome-wide expression profiling enables us to follow the progression of spore germination, thus dividing this process into two major stages and to identify germination-specific regulation of components of the mitotic cell cycle machinery. Keywords: Time course
Project description:To study the signals and pathways underlying spore germination we examined the global changes in gene expression during this process. We find that the germination process can be divided into two distinct stages. During the first stage, the induced spores respond only to glucose. The transcription program during this stage recapitulates the general transcription response of yeast cells to glucose. Only during the second phase are the cells able to sense and respond to other nutritional components in the environment. Components of the mitotic machinery are involved in spore germination but in a distinct pattern. In contrast to the mitotic cell cycle, growth related events during germination are not coordinated with nuclear events and are separately regulated. Genome-wide expression profiling enables us to follow the progression of spore germination, thus dividing this process into two major stages and to identify germination-specific regulation of components of the mitotic cell cycle machinery. Keywords: Time course
Project description:Transription profile of Saccharomyces cerevisiae SK1 cultures undergoing synchronous sporulation. We have measured mRNA levels in synchronized SK1 cells immediately upon transfer to the sporulation medium and every 30 minutes after that for 6 hours. mRNA extracted from these cultures were converted to cDNA and hybridized to microarrays and log2 ratios of hybridization signal of each time point was compared to that of time zero (immediately prior to transfer to the sporulation medium). Keywords: Time course