Project description:We report the transcriptomic comparisions between key processes required for various stages of fungal carnivory in nematode-trapping fungus Arthrobotrys oligospora when induced with nematodes. The reference assembly used for remapping is A. oligospora TWF154 (GenBank assembly accession: GCA_004768765.1)
Project description:We report the transcriptomic comparisions between ku70 control and ste12 mutant strains in nematode-trapping fungus Arthrobotrys oligospora when induced with nematodes. Fungal Ste12 transcription factor and the upstream MAPK cascade are highly conserved and plays a role in host sensing and pathogenesis in various fungal pathogens. Identification of Ste12-dependent in A. oligospora may provide further insights into the molecular mechanisms of nematode-sensing and trap morphogenesis. The reference assemly used for remapping is A. oligospora TWF154 (GenBank assembly accession: GCA_004768765.1)
Project description:Rab GTPases regulate vesicle trafficking in organisms and play crucial roles in growth and development. Arthrobotrys oligospora is a representative species of nematode-trapping (NT) fungi, it can produce trapping devices for nematode predation. Our previous study found that deletion of Aorab7A abolished the trap formation and sporulation. Here, we investigated the regulatory mechanism of AoRab7A using transcriptomic, biochemical, and phenotypic comparisons. Transcriptome analysis, yeast library screening, and Y2H assays identified two vacuolar protein sorting (Vps) proteins, AoVps41 and AoVps35, as putative targets of AoRab7A. The deletion of Aovps41 and Aovps35 caused considerable defects in multiple phenotypic traits. We further found a close connection between AoRab7A, homotypic fusion, vacuolar protein sorting, and the retromer involved in vesicle-vacuole fusion, which triggered vacuolar fragmentation. Further transcriptome analysis showed that AoRab7A and AoVps35 play essential roles in many cellular processes and components including proteasomes, autophagy, fatty acid degradation, and ribosomes in A. oligospora. Furthermore, we verified that AoRab7A, AoVps41, and AoVps35 are involved in ribosome and proteasome functions. The absence of these proteins inhibited the biosynthesis of nascent proteins and enhanced ubiquitination. Our findings suggest that AoRab7A can interact with AoVps41 and AoVps35 to mediate vacuolar fusion and influence lipid droplet accumulation, autophagy, stress response, and secondary metabolism. These proteins are especially required for the conidiation and trap development of A. oligospora
Project description:Mitophagy is one of the most important cellular processes to ensure mitochondrial quality control, which aims to transport damaged, dysfunctional, or excess mitochondria for degradation and reuse. Here, we determined the function of AoAtg11 and AoAtg33, two orthologous autophagy-related proteins involved in yeast mitophagy, in the typical nematode-trapping fungus Arthrobotrys oligospora . Deletion of Aoatg11 and Aoatg33 impairs mitophagy, mitochondrial morphology and activity, autophagy,cell apoptosis, reactive oxygen species levels, lipid droplet accumulation, and endocytosis. These combined effects resulted in slow vegetative growth; reduced conidiation, trap formation, cell nucleus, and extracellular protease activity; increased susceptibility to the stress response; and arthrobotrisin production in the Δ Aoatg11 and Δ Aoatg33 mutants, compared with the wild-type strain. In addition, the absence of Aoatg11 caused an endoplasmic reticulum stress response. Transcriptome analysis revealed that many differentially expressed genes in the Δ Aoatg11 mutants were involved in various important cellular processes, such as lipid metabolism, the TCA cycle, mitophagy, nitrogen metabolism, endocytosis, and the MAPK signaling pathway. In conclusion, our study revealed that Aoatg11 and Aoatg33 mediate autophagy and mitophagy in A. oligospora , and provides a basis for elucidating the links between mitophagy and fungal vegetative growth, conidiation, and pathogenicity.