Project description:This SuperSeries is composed of the following subset Series: GSE35955: Effects of aging on Human Mesenchymal Stem Cells GSE35956: Effects of Primary Osteoporosis and Advanced Age on Human Mesenchymal Stem Cells GSE35957: Effects of Cellular Senescence on Human Mesenchymal Stem Cells GSE35958: Effects of Primary Osteoporosis on Human Mesenchymal Stem Cells Refer to individual Series
Project description:Autologous peripheral hematopoietic stem cell transplantation (autoHSCT) is one front-line therapy with high-dose melphalan for multiple myeloma (MM). Patients with MM who receive conditioning regimen with melphalan usually suffer from severe gastrointestinal symptoms, as one of nonhematological toxicities. Aim: It is an urgent demand to develop an effective methods to repair the intestinal injuries in patients with MM receiving conditioning regimen with high-dose melphalan for autoHSCT. Therefore, the protective effects of Human umbilical cord derived-mesenchymal stem cells (hucMSCs) is investigated after infusion into mouse model with melphalan-induce gastrointestinal injuries.
Project description:Acetaminophen (APAP) is the major cause of drug-induced liver injury, with limited treatment options. APAP overdose invokes excessive oxidative stress that triggers mitochondria-to-nucleus retrograde pathways, contributing to APAP-induced liver injury (AILI). Mesenchymal stem cell therapy is a promising tool for acute liver failure. Therefore, the purpose of this study is to investigate the beneficial effects of adipose-derived mesenchymal stem cell (AMSC) therapy on AILI and reveal the potential therapeutic mechanisms. C57BL/6 mice are used as the animal model and AML12 normal murine hepatocytes as the cellular model of APAP overdose. Immunohistochemical staining, western blotting, immunofluorescence staining, and RNA sequencing assay are used for assessing the efficacy and validating mechanisms of AMSC therapy. We found AMSC therapy effectively ameliorated AILI, while delayed AMSC injection lost its efficacy related to the c-Jun N-terminal kinase (JNK)-mediated mitochondrial retrograde pathways. We further found that AMSC therapy inhibited JNK activation and mitochondrial translocation, reducing APAP-induced mitochondrial damage. The down-regulation of activated Ataxia telangiectasia mutated (ATM) and DNA damage response proteins in AMSC treated mice liver indicated AMSC blocked the JNK-ATM pathway. Overall, AMSC may be an effective treatment for AILI by inhibiting JNK-ATM mitochondrial retrograde pathway, which improves APAP-induced mitochondrial dysfunction and liver injury.
Project description:Proteome experiment was peformed on exosomes of human minor salivary gland mesenchymal stem cells and adipose-derived stem cells to find out the same points and difference of these two kinds of exosomes, which can hopefully give further guidance on further therapy research
Project description:Patients with estrogen-receptor-positive (ER+) breast cancer, the most common subtype, remain at risk for lethal metastatic disease years after diagnosis. Recurrence arises partly because tumor cells in bone marrow become resistant to estrogen-targeted therapy. Here, we utilized a co-culture model of bone marrow mesenchymal stem cells (MSCs) and ER+ breast cancer cells to recapitulate interactions of cancer cells in bone marrow niches. ER+ breast cancer cells in direct contact with MSCs acquire cancer stem-like (CSC) phenotypes with increased resistance to standard antiestrogenic drugs. We confirmed that co-culture with MSCs increased labile iron in breast cancer cells, a phenotype associated with CSCs and disease progression. Clinically approved iron chelators and in-house lysosomal iron-targeting compounds restored sensitivity to antiestrogenic therapy. These findings establish iron modulation as a mechanism to reverse MSC-induced drug resistance and suggest iron modulation in combination with estrogen-targeted therapy as a promising, translatable strategy to treat ER+ breast cancer.
Project description:To understand how interactions of myeloma cells with osteoclasts and mesenchymal stem cells in the bone marrow affect the clinical course of myeloma, we used microarrays to study changes in gene expression in freshly isolated myeloma plasma cells following co-cultures with osteoclasts (8 experiments) or with mesenchymal stem cells (13 experiments). Interaction with osteoclasts induced changes in the expression of 675 genes, and interaction with mesenchymal stem cells induced changes in the expression of 296 genes. Expression of only 58 genes commonly and similarly changed in both co-culture systems. Among these, we identified genes associated with overall, progression-free, and post-relapse survival, and developed survival prediction models. Gene expression data from 347 patients treated with total therapy 2 protocol, 433 with total therapy 3, and 98 patients who received various treatments (91 of them high-dose therapy with autologous stem cell support) were used for the analysis. Good predictive models were developed only for post-relapse survival, using genes involved in interaction with osteoclasts or with mesenchymal stem cells. The best predictive model used expression of first relapse of 33 probesets whose expression changed in myeloma cells following interaction with osteoclasts, with hazard ratios of 24, 20, and 12 for patients who relapsed following total therapy 2, total therapy 3 and the various other treatments, respectively. Among the probesets used for prediction, only 10, representing 8 genes, were commonly changed after both co-culture systems. These could present favorable target for therapy. Global gene expression profiling of primary multiple myeloma plasma cells (MMPCs) and mesenchymal stem cells (MSCs) before and after co-culture was done using Affymetrix microarrays. Thirteen MMPC and MSC co-culture experiments using MMPCs from 8 patients and MSCs from 5 healthy donors were performed.
Project description:Breast cancer remains one of the leading causes of death in women, being the chemotherapeutic agent doxorubicin (Dox) among the most widely standard chemotherapy options for its treatment. However, its effective use has been severely limited owing to its well-documented cardiotoxic side effect that can lead to heart failure in a subset of patients. We have previously shown that a specific population of mesenchymal stem cells (MSCs) present immunomodulatory and regenerative properties, mainly granted by its secretome (CM), whose potential was improved when produced under 3D conditions. In cancer, the role of MSCs is still contradictory, with literature reporting both cancer promoting and suppressive effects. Therefore, we aimed at determining the effect of concomitant exposure of Dox with CM from 3D (CM3D) and 2D (CM2D) MSC cultures in breast cancer cells (MDA-MB-231) and in non-tumour breast epithelial cells (MCF10A) and differentiated AC16 cardiomyocytes. As such, the whole secretome was obtained by collecting and concentrating the culture media conditioned by MSCs in 2D (CM2D) and 3D (CM3D). A Ge-LC-MS/MS proteomic analysis revealed that CM3D effects may be linked to MSC cytoprotection and tumour development, namely through regulation of cell proliferation (CAPN1, CST1, LAMC2, RANBP3), migration (CCN3, MMP-8, PDCD5), invasion (TIMP-1/2), oxidative stress (AIFM1, CD9, GSR) and inflammation (ANXA5, CDH13, GDF-15). Overall, MSC-derived CM3D decreased Dox-induced cytotoxic effects on non-tumour breast cells and cardiomyocytes, without compromising Dox chemotherapeutic nature, highlighting the potential use of CM3D as an adjuvant in chemotherapy to reduce off-target side effects.