Project description:Background: Probiotic-like bacteria treatment has been described to be associated with gut microbiota modifications. Goal: To decipher if the effects of the tested probiotic-like bacteria are due to the bacteria itself or due to the effects of the bacteria on the gut microbiota. Methodology: In this study, gut microbiota has been analyzed from feces samples of subjects with metabolic syndrome and treated with one of the 2 tested probiotic-like bacteria or with the placebo during 3months.
Project description:We used Affymetrix microarrays to investigate gene expression changes in somatic cells from breast-milk extracted from women suffering from mastitis and taking a daily dose of three capsules with ~50 mg of a freeze-dried probiotic (~109 CFU of L. salivarius PS2 strain) for 21 days. Healthy women were subjected to the same treatment for comparison. The aim of this work was to determine whether the daily intake of a probiotic strain for a total of 21 days exerted any modulatory effects, at the level of gene expression, in somatic cells from breast-milk in women with mastitis. Women were divided into 2 groups: mastitis and healthy. Total RNA was extracted from breast-milk isolated cells obtained from 10 participants (7 women from the mastitis group and 3 women from the healthy group) at day 0 (initial) and after 21 days (final) to compare differential gene expression between the groups. Differential gene expression after 21 days of the study for each group: mastitis and healthy
Project description:Characterisation of probiotic potentials of lactic acid bacteria isolates from mothers breast milk and neonates faeces as potential probiotics
Project description:Human breast milk contains a diverse community of bacteria but factors that produce variation in the breast milk microbiome are largely unknown. We evaluated if 1) maternal factors including breastfeeding practices modified the diversity and abundance of bacterial communities in breast milk and 2) if subclinical mastitis (SCM), an asymptomatic inflammatory condition occurring during lactation, induced a distinctive microbiota signature.
Project description:Lactic acid bacteria have been used as starter strains in the production of fermented dairy products for centuries. Lactobacillus acidophilus is a widely recognized probiotic bacteria commonly added to yogurt and used in dietary supplements. In this study, a whole genome microarray was employed to monitor gene expression of L. acidophilus cells propagated in 11% skim milk (SM) during early, mid and late logarithmic phase, and stationary phase. Approximately 21% of 1,864 ORFs were differentially expressed at least in one time point. Genes differentially expressed in SM included several members of the proteolytic enzyme system. Expression of prtP (proteinase precursor) and prtM (maturase) increased over time as well as several peptidases and transport systems. Expression of Opp1 (oligopeptide transport system 1) was highest at 4h, while gene expression of Opp2 increased over time reaching its highest level at 12h, suggesting that the two systems have different specificities. Expression of a two-component regulatory system (2CRS), previously shown to regulate acid tolerance and proteolytic activity, also increased during the early log and early stationary phases of growth. Expression of the genes involved in lactose utilization increased immediately (5 min) upon exposure to milk. The acidification activity, survival under storage conditions, and adhesion to mucin and Caco-2 tissue culture cells of selected mutants containing insertionally inactivated genes differentially expressed in the wild-type strain during growth in milk were examined for any potential links between probiotic properties and bacterial growth and survival in milk. Some of the most interesting genes found to be expressed in milk were correlated with signaling (AI-2) and adherence to mucin and intestinal epithelial cells, in vitro.
Project description:PFAS are widely used in commercial products, and so humans have consistent exposure to them via oil- and water-resistant consumer products, fire- fighting foam, and industrial surfactants 1,2. The four PFASs commonly detected in blood, perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS) 3,4, are present in drinking water supplies both in northern New England as well as in 27 states nationally 5-8. Animal models shows that PFASs have can have effects on both the endocrine system and on adiposity 9-12. Epidemiological evidence shows that the presence of PFASs in maternal serum is associated with changes in maternal serum lipid and cholesterol composition 13,14. Similarly, serum levels of PFAS in adolescents have been associated with increases in serum cholesterol 15. These findings raise interesting questions about the association of PFAS and lipids in human milk. Research has shown the PFASs are present in human milk 16-18, and human milk is composed primarily of lipids 19. However, the relation between PFAS in milk and milk composition is unclear. The chemical and compositional profiles of breast milk are important because of the potential effects on the developing infant. The developmental origins of health and disease hypothesis suggests that early life exposures, such as toxins and nutrients via breast milk, have lasting effects on health, particularly obesity outcomes 20. In fact, some studies have shown associations between PFAS in maternal serum and infant birth weight and later childhood BMI 14,21. Our study will help to better illuminate the potential effects of maternal exposure to PFASs on infant exposure, both through direct transmission into breast milk and indirectly via influence on the lipid profiles of milk. To investigate how early life exposure to perfluoroalkyl substances (PFAS) may affect childhood health outcomes as mediated through breast milk, we propose the following specific aims: 1. Characterize the levels of PFAS in breast milk samples (n=495) in the NHBCS; 2. Characterize the lipid profiles of breast milk samples (n=495) in the NHBCS; 3. Test the relation between PFAS concentration and breast milk lipid profiles; and 4. Test the association between PFAS concentrations in maternal plasma collected during pregnancy with paired breast milk samples (n=100).
Project description:Kefir is a milk fermented by microorganisms with probiotic potential. Its consumption is associated with several beneficial effects, from antibacterial, healing, antioxidant, anti-inflammatory, anti-allergic, plasma glucose and cholesterol control to antitumor and antihypertensive activities. Despite its great potential, little is known about the bioactive molecules responsible for these actions. Therefore, the present project aims to perform the proteomic study of Kefir and its grain used for the milk fermentation aiming to identify the bioactive peptides, in particular those peptides with action in the cardiovascular system.
Project description:We used Affymetrix microarrays to investigate gene expression changes in somatic cells from breast-milk extracted from women suffering from mastitis and taking a daily dose of three capsules with ~50 mg of a freeze-dried probiotic (~109 CFU of L. salivarius PS2 strain) for 21 days. Healthy women were subjected to the same treatment for comparison.
Project description:Breast milk is a complex liquid that enriched in immunological components and affect the development of the infant immune system. Exosomes, the membranous vesicles of endocytic origin, are ubiquitously in various body fluids which can mediate intercellular communication. MicroRNAs (miRNAs), a well-defined group of non-coding small RNAs, in human breast milk are packaged inside exosomes. Here, we present the identification of miRNAs in human breast milk exosomes using deep sequencing technology. We found that the immune-related miRNAs are enriched in breast milk exosomes, and are resistant to the general harsh conditions.
Project description:To further explore the underlying mechanisms of the protection functions of human milk exosmes, high throughput sequencings were used to identify differentially expressed lncRNA and mRNA profiles between human milk exosomes form term human breast milk (Term-Exos) and preterm human breast milk (Pre-Exos).