Project description:Here, we define the proteomic response of the early divergent liverwort Marchantia polymorpha during infection with the oomycete pathogen Phytophthora palmivora. We sampled whole liverwort thalli that were mock-inoculated (water) or infected with P. palmivora zoospores at 4 and 8 days post inoculation (dpi). This analysis revealed the protein profiles of liverworts during the biotrophic (4 dpi) and necrotrophic (8 dpi) stages of pathogen infection. In combination with additional omics datasets, our analyses reveal conserved aspects in the molecular response to pathogen infection in liverworts and angiosperms.
Project description:We used raw RNA-Seq data from the lichen Lobaria pulmonaria to analyze changes in gene expression in response to ultraviolet-B (UV-B) treatment. The aim of the present work was to unravel the UV-B-induced defense response in the lichen Lobaria pulmonaria based on physiological traits and transcriptional profiling. Here we analyzed gene expression in mycobionts (Lobaria pulmonaria) and photobionts (Symbiochloris reticulata) after 80 min daily application of UV-B treatment of Lobaria pulmonaria thalli for two weeks. Special attention was paid to the UV-B-induced expression of the genes encoding stress tolerance proteins (heat shock proteins, antioxidants, etc.) and enzymes involved in the biosynthesis of photoprotective metabolites.
2024-09-03 | GSE228186 | GEO
Project description:Bacterial diversity of Peltigera thalli, their subjacent substrates, and the surrounding soils
| PRJNA931999 | ENA
Project description:Viruses associated with healthy and bleached thalli of the green seaweed Ulva
| PRJNA902394 | ENA
Project description:Zonal variability of epiphytic microbial community and surface metabolome along thalli of the seaweed holobiont Taonia atomaria
Project description:Disease outbreaks devastate Pyropia aquaculture farms every year. The three most common and serious diseases are Olpidiopsis blight and red-rot disease caused by oomycete pathogens and green-spot disease caused by PyroV1 virus. We hypothesized that a basic genetic profile of molecular defenses will be revealed by comparing and analyzing genetic response of Pyropia tenera against the above three pathogens. RNAs isolated from infected thalli were hybridized onto an oligochip containing 15,115 primers designed from P. tenera ESTs. Microarray profiles of the three diseases were compared and interpreted together with histochemical observation. Massive amounts of reactive oxygen species (ROS) were accumulated in P. tenera cells exposed to oomycete pathogens. Heat shock genes and serine proteases were the most highly upregulated genes in all infection experiments. Genes involved in RNA metabolism, ribosomal proteins and antioxidant metabolism were also highly upregulated. Genetic profiles of P. tenera in response to pathogens were most similar between the two biotrophic pathogens, Olpidiopsis pyropiae and PyroV1 virus. A group of plant R-gene homologues were specifically regulated against each pathogen. Our results suggested that disease resistance of P. tenera consist of a general and constitutive defense and a genetic toolkit against specific pathogen.