Project description:To study the effect of plant metabolites on M. oryzae, we selected salicylic acid (SA), abscisic acid (ABA), and sakuranetin to treat M. oryzae grown on the medium with the concentration of 100μM. After 10 days' treatment, the total RNA were extracted and detected the transcriptome.
Project description:Plant hormones involved in environmental stresses, namely abscisic acid (ABA), salicylic acid (SA), and jasmonic acid (JA), have been shown to interact with each other in a complex manner. To address the network of the hormone interactions, we have investigated the changes in expression under multiple hormone treatments, ABA+SA and ABA+JA. We chose cultured cells to remove the difference in the response to hormones among developmental cells or tissues. The cells were treated for 3hr and 24hr to see the rapid or transient response and steady-state response. The obtained data indicate that ABA and SA affect antagonistically, but these hormones affected many genes collaboratively. Indeed, according to the microarray data, there are many genes that responded only to ABA+SA. In addition, the ABA+SA responsive genes also responded to ABA+JA. These data suggest that hormone crosstalk is more complicated than expected and that more systematic analysis is required to untangle the hormone crosstalk network.
Project description:Plant hormones involved in environmental stresses, namely abscisic acid (ABA), salicylic acid (SA), and jasmonic acid (JA), have been shown to interact with each other in a complex manner. To address the network of the hormone interactions, we have investigated the changes in expression under multiple hormone treatments, ABA+SA and ABA+JA. We chose cultured cells to remove the difference in the response to hormones among developmental cells or tissues. The cells were treated for 3hr and 24hr to see the rapid or transient response and steady-state response. The obtained data indicate that ABA and SA affect antagonistically, but these hormones affected many genes collaboratively. Indeed, according to the microarray data, there are many genes that responded only to ABA+SA. In addition, the ABA+SA responsive genes also responded to ABA+JA. These data suggest that hormone crosstalk is more complicated than expected and that more systematic analysis is required to untangle the hormone crosstalk network. To investigate the hormonal interactions, Arabidopsis T87 cultured cells were exposed to ABA, SA, or JA alone, or two hormones simultaneously, ABA+SA or ABA+JA, for 3hr and 24 hr. Comparing the data among those treatments, the relationships among these hormones were deduced.
Project description:Genetic studies have shown essential functions of N-glycosylation during infection of the plant pathogenic fungi, however, systematic roles of N-glycosylation in fungi is still largely unknown. Biological analysis demonstrated N-glycosylated proteins were widely present at different development stages of Magnaporthe oryzae and especially strong in the appressorium and invasive hypha.A large-scale quantitative proteomics analysis was then performed to explore the roles of N-glycosylation in M. oryzae.
Project description:To investigate the role of iron excess in rice immune responses to Magnaporthe oryzae infection. Gene expression profiling analysis were performed using data obtained from RNA-seq of rice plants grown in differential iron supply and challenged with Magnaporthe oryzae spores.
Project description:This SuperSeries is composed of the following subset Series: GSE8517: Magnaporthe oryzae gene expression during biotrophic invasion of rice using version 2 of the Agilent Magnaporthe grisea Array (G4137B). GSE8518: Rice gene expression during biotrophic invasion by the rice blast fungus Magnaporthe oryzae using the Agilent Rice Array (G4138A). Keywords: SuperSeries Refer to individual Series
Project description:Concomitant sRNA and mRNAseq was carried out to elucidate the reprogramming occurring during Magnaporthe oryzae - Brachypodium distachyon interaction in three different setups: biotrophic stage of leaf infection (Leaf 2 DPI), necrotrophic stage of leaf infection (Leaf 4 DPI) and finally root infection (Root).
Project description:Concomitant sRNA and mRNAseq was carried out to elucidate the reprogramming occurring during Magnaporthe oryzae - Brachypodium distachyon interaction in three different setups: biotrophic stage of leaf infection (Leaf 2 DPI), necrotrophic stage of leaf infection (Leaf 4 DPI) and finally root infection (Root).