Project description:Rhizoremediation, the biotechnology of the utilization of rhizospheric microorganisms associated with plant roots for the elimination of soil contaminants, is based on the ability of microorganisms to metabolize nutrients from plant root exudates, in order to survive the stressful conditions of the rhizosphere, and thereby, to co-metabolize or even mineralize toxic environmental contaminants. Novosphingobium sp. HR1a is a bacterial strain able to degrade a wide variety of polycyclic aromatic hydrocarbons (PAHs). We have demonstrated that this bacterium is able to grow in vegetated microcosms and to eliminate phenanthrene in the presence of clover faster than in non-vegetated systems, establishing a positive interaction with clover. We have studied the molecular basis of this interaction by phenomic, metabolomic and transcriptomic analyses, demonstrating that the positive interaction between clover and Novosphingobium sp. HR1a is a result of the bacterial utilization of different carbon and nitrogen sources (such as sugars, amino acids and organic acids) released during seedling development, and the capacity of exudates to induce the PAH degradation pathway. These results are pointing out to Novosphingobium sp. HR1a as a promising strain for the bioremediation of PAH-contaminated soils.
2021-04-19 | GSE172273 | GEO
Project description:RNA-sequencing of lucerne weevil
Project description:We performed a transcriptome analysis of interior spruce (Picea glauca x engelmannii) bark response to weevil (Pissodes strobi) feeding using 21.8K spruce microarray (that contains 21.8 thousand unique transcripts). This microarray study revealed a large rearrangement of the interior spruce bark transcriptome in response to weevil feeding involving differential expression of close to 20% of the studied transcriptome.
Project description:We performed a transcriptome analysis of interior spruce (Picea glauca x engelmannii) bark response to weevil (Pissodes strobi) feeding using 21.8K spruce microarray (that contains 21.8 thousand unique transcripts). This microarray study revealed a large rearrangement of the interior spruce bark transcriptome in response to weevil feeding involving differential expression of close to 20% of the studied transcriptome. RNA was isolated from the bark of interior spruce exposed to weevil feeding and from the bark of untreated trees at three time points (6 hours, 2 days and 2 weeks). Four independent biological replicates were included for treatment and control at each time point. Four hybridizations were performed for treatment and control comparison within each time point (6 hours, 2 days, 2 weeks) and one hybridization was performed for each comparison between time points for both treatment and control (total 18 hybridizations/slides).
Project description:Transcriptomes analysis of the petals from a red-flowered white clover mutant (red flowers) and its shade-treated counterpart (white flowers) grown under shaded conditions was performed using high-throughput sequencing. We obtained 121,626,564 and 130,577,944 clean reads in red-flowered mutant and treated counterpart, respectively. Of these clean reads, we respectively gained 125,350 and 99,638 unigene sequencces in two groups. As a result, a total of 157,964 unigenes were obtained with an average length of 728 bp and a median length of 1346 bp. These findings provideed insights into the expression profiles in red-flowered white clover mutant, and deepened our understanding of flower pigmentation in white clower.
Project description:To investigate the mechanisms related to anti-ferroptotic effects of red clover extract, we performed differentially expressed genes analysis using data obtained from the RNA-seq of system xCT knockout mouse embryonic fibroblast cells.
Project description:Red clover (Trifolium pratense L.) is one of the most important legume forage species in temperate livestock agriculture. Tetraploid red clover cultivars are generally producing less seed than diploid cultivars. Improving the seed setting potential of tetraploid cultivars is necessary in order to utilize the high forage quality and environmentally sustainable nitrogen fixation of red clover. Two genotypes, one from cv.Tripo with weak seed setting and one from cv.Lasang with strong seed setting, were selected based on data from field experiments for transcriptome analysis of developing flower buds. De novo and reference based analyses of transcriptome assemblies were conducted to study the global transcriptome changes from early to late developmental stages of flower development of the two contrasting red clover genotypes. Transcript profiles, gene ontology enrichment and KEGG pathway analysis indicate that genes related to flower development, pollen pistil interactions, photosynthesis and embryo development are differentially expressed between the Tripo and Lasang genotypes. A significant number of genes related to pollination was overrepresented in Lasang, which might be a reason for its good seed setting ability. The candidate genes detected in this study might be used to develop molecular tools for breeding tetraploid red clover varieties with improved seed yield potentials.
Project description:Oil palm leaves were analysed via proteomics approach to identify the differentially-expressed proteins under Red Palm Weevil infestation on the first, third and sixth week post-infestation. The comparison was made among three groups; the control (C), physical wounding by drilling (wounded,W) and the red palm weevil larva infestation (Infested, I)