Project description:This SuperSeries is composed of the following subset Series:; GSE5937: wheat expression level polymorphism study parental genotypes 2 biological reps from SB location; GSE5939: Wheat expression level polymorphism study 36 genotypes 2 biological reps from SB location Experiment Overall Design: Refer to individual Series
Project description:To better understand the regulatory mechanisms of water stress response in wheat, the transcript profiles in roots of two wheat genotypes, namely, drought tolerant 'Luohan No.2' (LH) and drought susceptible 'Chinese Spring' (CS) under water-stress were comparatively analyzed by using the Affymetrix wheat GeneChip®. A total of 3831 transcripts displayed 2-fold or more expression changes, 1593 transcripts were induced compared with 2238 transcripts were repressed, in LH under water-stress; Relatively fewer transcripts were drought responsive in CS, 1404 transcripts were induced and 1493 were repressed. Comparatively, 569 transcripts were commonly induced and 424 transcripts commonly repressed in LH and CS under water-stress. 689 transcripts (757 probe sets) identified from LH and 537 transcripts (575 probe sets) from CS were annotated and classified into 10 functional categories, and 74 transcripts derived from 80 probe sets displayed the change ratios no less than 16 in LH or CS. Several kinds of candidate genes were differentially expressed between the LH and CS, which could be responsible for the difference in drought tolerance of the two genotypes.
Project description:Fructans represent the major component of water soluble carbohydrates (WSCs) in the maturing stem of temperate cereals and are an important temporary carbon reserve for grain filling. Theoretically, genotypic variation in carbon reserve accumulation is determined by relative carbon availability and demand at the whole plant level. To evaluate the importance of source carbon availability in fructan accumulation and its associated molecular mechanisms, we performed comparative analyses of individual WSC components and the expression profiles of genes involved in major carbohydrate metabolism and photosynthesis in flag leaves of recombinant inbred lines derived from a cross between wheat cultivars Seri M82 and Babax (SB lines). High sucrose levels in the mature flag leaf (source carbon organ) were found to be positively associated with WSC and fructan concentrations in both the leaf and stem of SB lines in several field trials. Analysis of Affymetrix expression array data revealed that high leaf sucrose lines grown in abiotic-stress-prone environments had high expression levels of a number of genes in the leaf involved in the sucrose synthetic pathway and photosynthesis, such as Calvin cycle genes, antioxidant genes involved in the removal of chloroplast H2O2 and genes involved in energy dissipation. The expression of the majority of genes involved in fructan and starch synthetic pathways were positively correlated with sucrose levels in the leaves of these SB lines. 8 genotypes of recombinant inbred lines Seri M82 x Babax with 2 biological replicates per genotype. Grown in the field under irrigated conditions.
Project description:Fructans represent the major component of water soluble carbohydrates (WSCs) in the maturing stem of temperate cereals and are an important temporary carbon reserve for grain filling. Theoretically, genotypic variation in carbon reserve accumulation is determined by relative carbon availability and demand at the whole plant level. To evaluate the importance of source carbon availability in fructan accumulation and its associated molecular mechanisms, we performed comparative analyses of individual WSC components and the expression profiles of genes involved in major carbohydrate metabolism and photosynthesis in flag leaves of recombinant inbred lines derived from a cross between wheat cultivars Seri M82 and Babax (SB lines). High sucrose levels in the mature flag leaf (source carbon organ) were found to be positively associated with WSC and fructan concentrations in both the leaf and stem of SB lines in several field trials. Analysis of Affymetrix expression array data revealed that high leaf sucrose lines grown in abiotic-stress-prone environments had high expression levels of a number of genes in the leaf involved in the sucrose synthetic pathway and photosynthesis, such as Calvin cycle genes, antioxidant genes involved in the removal of chloroplast H2O2 and genes involved in energy dissipation. The expression of the majority of genes involved in fructan and starch synthetic pathways were positively correlated with sucrose levels in the leaves of these SB lines.
Project description:To better understand the regulatory mechanisms of water stress response in wheat, the transcript profiles in roots of two wheat genotypes, namely, drought tolerant 'Luohan No.2' (LH) and drought susceptible 'Chinese Spring' (CS) under water-stress were comparatively analyzed by using the Affymetrix wheat GeneChip®. A total of 3831 transcripts displayed 2-fold or more expression changes, 1593 transcripts were induced compared with 2238 transcripts were repressed, in LH under water-stress; Relatively fewer transcripts were drought responsive in CS, 1404 transcripts were induced and 1493 were repressed. Comparatively, 569 transcripts were commonly induced and 424 transcripts commonly repressed in LH and CS under water-stress. 689 transcripts (757 probe sets) identified from LH and 537 transcripts (575 probe sets) from CS were annotated and classified into 10 functional categories, and 74 transcripts derived from 80 probe sets displayed the change ratios no less than 16 in LH or CS. Several kinds of candidate genes were differentially expressed between the LH and CS, which could be responsible for the difference in drought tolerance of the two genotypes. Two common wheat (Triticum aestivum L.) cultivars, Luohan No.2 (LH) and Chinese Spring (CS), were used for this study. Seedlings at the two leaf stage were stressed by cultured in PEG solutions for 6h, and some other seedlings were cultured in tap water as control. Root samples of LH and CS at 6h after the stress treatment and untreated control were prepared for microarray analysis.
Project description:The responses to waterlogging stress of two wheat genotypes including one sensitive and one resistant were systematic investigated. The labeling-based quantitative proteomic analysis was conducted in parallel on these two genotypes in responding to waterlogging for 1-3 days, 951 and 320 differentially expressed proteins (DEP) were detected in the during treat, and 270 DEPs were shared. The results might help to reveal the regulatory mechanism of waterlogging stress tolerance in wheat.
Project description:Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare NGS-derived Triticum aestivum transcriptome (RNA-seq) profiling methods and to evaluate genotypes associated with resistance against the Wheat dwarf virus. Methods: Triticum aestivum mRNA profiles of genotypes associated with resistance against the Wheat dwarf virus were generated by deep sequencing, in four replicates, using Illumina. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. qRT–PCR validation was performed using TaqMan and SYBR Green assays. Conclusions: Our study represents the first detailed analysis of Triticum aestivum transcriptomes, with biologic replicates, generated by RNA-seq technology. The optimized data analysis workflows reported here should provide a framework for comparative investigations of expression profiles. Our results show that NGS offers a comprehensive and more accurate quantitative and qualitative evaluation of mRNA and miRNA content within a cell or tissue. We conclude that RNA-seq based transcriptome characterization would expedite genetic network analyses and permit the dissection of complex biologic functions.